Deep Learning-Based Radio Map for MIMO-OFDM Downlink Precoding

Wei Wang;Bin Yang;Wei Zhang
{"title":"Deep Learning-Based Radio Map for MIMO-OFDM Downlink Precoding","authors":"Wei Wang;Bin Yang;Wei Zhang","doi":"10.23919/JCIN.2023.10272348","DOIUrl":null,"url":null,"abstract":"Radio map is an advanced technology that mitigates the reliance of multiple-input multiple-output (MIMO) beamforming on channel state information (CSI). In this paper, we introduce the concept of deep learning-based radio map, which is designed to be generated directly from the raw CSI data. In accordance with the conventional CSI acquisition mechanism of MIMO, we first introduce two baseline schemes of radio map, i.e., CSI prediction-based radio map and throughput prediction-based radio map. To fully leverage the powerful inference capability of deep neural networks, we further propose the end-to-end structure that outputs the beamforming vector directly from the location information. The rationale behind the proposed end-to-end structure is to design the neural network using a task-oriented approach, which is achieved by customizing the loss function that quantifies the communication quality. Numerical results show the superiority of the task-oriented design and confirm the potential of deep learning-based radio map in replacing CSI with location information.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"8 3","pages":"203-211"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10272348/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radio map is an advanced technology that mitigates the reliance of multiple-input multiple-output (MIMO) beamforming on channel state information (CSI). In this paper, we introduce the concept of deep learning-based radio map, which is designed to be generated directly from the raw CSI data. In accordance with the conventional CSI acquisition mechanism of MIMO, we first introduce two baseline schemes of radio map, i.e., CSI prediction-based radio map and throughput prediction-based radio map. To fully leverage the powerful inference capability of deep neural networks, we further propose the end-to-end structure that outputs the beamforming vector directly from the location information. The rationale behind the proposed end-to-end structure is to design the neural network using a task-oriented approach, which is achieved by customizing the loss function that quantifies the communication quality. Numerical results show the superiority of the task-oriented design and confirm the potential of deep learning-based radio map in replacing CSI with location information.
基于深度学习的MIMO-OFDM下行预编码无线电映射
无线电映射是一种先进的技术,它减轻了多输入多输出(MIMO)波束成形对信道状态信息(CSI)的依赖。在本文中,我们引入了基于深度学习的无线电地图的概念,该地图被设计为直接从原始CSI数据生成。根据MIMO的传统CSI获取机制,我们首先介绍了两种无线电映射的基线方案,即基于CSI预测的无线电映射和基于吞吐量预测的无线电地图。为了充分利用深度神经网络强大的推理能力,我们进一步提出了直接从位置信息输出波束形成向量的端到端结构。所提出的端到端结构背后的原理是使用面向任务的方法来设计神经网络,这是通过定制量化通信质量的损失函数来实现的。数值结果表明了面向任务设计的优越性,并证实了基于深度学习的无线电地图在用位置信息取代CSI方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信