Minimum Status, Matching and Domination of Graphs

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Caixia Liang;Bo Zhou;Haiyan Guo
{"title":"Minimum Status, Matching and Domination of Graphs","authors":"Caixia Liang;Bo Zhou;Haiyan Guo","doi":"10.1093/comjnl/bxaa057","DOIUrl":null,"url":null,"abstract":"Given a graph, the status of a vertex is the sum of the distances between the vertex and all other vertices. The minimum status of a graph is the minimum of statuses of all vertices of this graph. We give a sharp upper bound for the minimum status of a connected graph with fixed order and matching number (domination number, respectively) and characterize the unique trees achieving the bound. We also determine the unique tree such that its minimum status is as small as possible when order and matching number (domination number, respectively) are fixed.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"64 9","pages":"1384-1392"},"PeriodicalIF":1.5000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/comjnl/bxaa057","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9579108/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 7

Abstract

Given a graph, the status of a vertex is the sum of the distances between the vertex and all other vertices. The minimum status of a graph is the minimum of statuses of all vertices of this graph. We give a sharp upper bound for the minimum status of a connected graph with fixed order and matching number (domination number, respectively) and characterize the unique trees achieving the bound. We also determine the unique tree such that its minimum status is as small as possible when order and matching number (domination number, respectively) are fixed.
图的最小状态、匹配与支配
给定一个图,一个顶点的状态是该顶点与所有其他顶点之间距离的总和。图的最小状态是该图的所有顶点的状态的最小值。我们给出了具有固定阶和匹配数(分别为支配数)的连通图的最小状态的一个尖锐上界,并刻画了实现该上界的唯一树。我们还确定了唯一树,使得当顺序和匹配数(分别为支配数)固定时,其最小状态尽可能小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信