Howon Lee;Byungju Lee;Heecheol Yang;Junghyun Kim;Seungnyun Kim;Wonjae Shin;Byonghyo Shim;H. Vincent Poor
{"title":"Towards 6G hyper-connectivity: Vision, challenges, and key enabling technologies","authors":"Howon Lee;Byungju Lee;Heecheol Yang;Junghyun Kim;Seungnyun Kim;Wonjae Shin;Byonghyo Shim;H. Vincent Poor","doi":"10.23919/JCN.2023.000006","DOIUrl":null,"url":null,"abstract":"Technology forecasts anticipate a new era in which massive numbers of humans, machines, and things are connected to wireless networks to sense, process, act, and communicate with the surrounding environment in a real-time manner. To make the visions come true, the sixth generation (6G) wireless networks should be hyper-connected, implying that there are no constraints on the data rate, coverage, and computing. In this article, we first identify the main challenges for 6G hyperconnectivity, including terabits-per-second (Tbps) data rates for immersive user experiences, zero coverage-hole networks, and pervasive computing for connected intelligence. To overcome these challenges, we highlight key enabling technologies for 6G such as distributed and intelligence-aware cell-free massive multi-input multi-output (MIMO) networks, boundless and fully integrated terrestrial and non-terrestrial networks, and communication-aware distributed computing for computationintensive applications. We further illustrate and discuss the hyper-connected 6G network architecture along with open issues and future research directions.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5449605/10190217/10136521.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10136521/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Technology forecasts anticipate a new era in which massive numbers of humans, machines, and things are connected to wireless networks to sense, process, act, and communicate with the surrounding environment in a real-time manner. To make the visions come true, the sixth generation (6G) wireless networks should be hyper-connected, implying that there are no constraints on the data rate, coverage, and computing. In this article, we first identify the main challenges for 6G hyperconnectivity, including terabits-per-second (Tbps) data rates for immersive user experiences, zero coverage-hole networks, and pervasive computing for connected intelligence. To overcome these challenges, we highlight key enabling technologies for 6G such as distributed and intelligence-aware cell-free massive multi-input multi-output (MIMO) networks, boundless and fully integrated terrestrial and non-terrestrial networks, and communication-aware distributed computing for computationintensive applications. We further illustrate and discuss the hyper-connected 6G network architecture along with open issues and future research directions.
期刊介绍:
The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.