On the Voevodsky Motive of the Moduli Stack of Vector Bundles on a Curve

IF 0.6 4区 数学 Q3 MATHEMATICS
Victoria Hoskins;Simon Pepin Lehalleur
{"title":"On the Voevodsky Motive of the Moduli Stack of Vector Bundles on a Curve","authors":"Victoria Hoskins;Simon Pepin Lehalleur","doi":"10.1093/qmathj/haaa023","DOIUrl":null,"url":null,"abstract":"We define and study the motive of the moduli stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s category of motives. We prove that this motive can be written as a homotopy colimit of motives of smooth projective Quot schemes of torsion quotients of sums of line bundles on the curve. When working with rational coefficients, we prove that the motive of the stack of bundles lies in the localizing tensor subcategory generated by the motive of the curve, using Białynicki-Birula decompositions of these Quot schemes. We conjecture a formula for the motive of this stack, inspired by the work of Atiyah and Bott on the topology of the classifying space of the gauge group, and we prove this conjecture modulo a conjecture on the intersection theory of the Quot schemes.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmathj/haaa023","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519146/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

Abstract

We define and study the motive of the moduli stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s category of motives. We prove that this motive can be written as a homotopy colimit of motives of smooth projective Quot schemes of torsion quotients of sums of line bundles on the curve. When working with rational coefficients, we prove that the motive of the stack of bundles lies in the localizing tensor subcategory generated by the motive of the curve, using Białynicki-Birula decompositions of these Quot schemes. We conjecture a formula for the motive of this stack, inspired by the work of Atiyah and Bott on the topology of the classifying space of the gauge group, and we prove this conjecture modulo a conjecture on the intersection theory of the Quot schemes.
曲线上向量束模堆的Voevodsky动机
在Voevodsky的动机范畴中,我们定义并研究了光滑投影曲线上固定秩和阶的向量束的模堆栈的动机。我们证明了这个动机可以写成曲线上线束和的扭商的光滑投影商格式的动机的一个同伦群。当使用有理系数时,我们使用这些Quot方案的Białynicki-Birula分解,证明了丛堆栈的动机位于由曲线的动机生成的局部化张量子类别中。受Atiyah和Bott关于规范群分类空间拓扑的工作的启发,我们猜想了这个堆栈的动机的一个公式,并在Quot格式的交集理论上证明了这个猜想的模a猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信