{"title":"Damped modes for a bosonic quantum oscillator in the near-horizon geometry of the BTZ black hole","authors":"Abdullah Guvendi, Semra Gurtas Dogan","doi":"10.1007/s10714-022-03058-4","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse the evolution of a generalized bosonic oscillator in the near horizon geometry of the BTZ black hole by analytically obtaining a solution of the associated Klein–Gordon equation. We show that it is possible to obtain relativistic frequency expression in closed-form for the system in question. Here, we observe that such a system decays in time without any real oscillation and the damped modes depend explicitly on the parameters of the oscillator coupling besides the parameters of the background geometry. This result allows us to analyse the influences of both oscillator coupling and spacetime parameters on the evolution of such a test field. Also, the results indicate that the spacetime background is stable under this perturbation field.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-022-03058-4.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-022-03058-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
We analyse the evolution of a generalized bosonic oscillator in the near horizon geometry of the BTZ black hole by analytically obtaining a solution of the associated Klein–Gordon equation. We show that it is possible to obtain relativistic frequency expression in closed-form for the system in question. Here, we observe that such a system decays in time without any real oscillation and the damped modes depend explicitly on the parameters of the oscillator coupling besides the parameters of the background geometry. This result allows us to analyse the influences of both oscillator coupling and spacetime parameters on the evolution of such a test field. Also, the results indicate that the spacetime background is stable under this perturbation field.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.