Infinite-Dimensional Degree Theory and Ramer’S Finite Co-Dimensional Differential Forms

IF 0.6 4区 数学 Q3 MATHEMATICS
K. D. Elworthy
{"title":"Infinite-Dimensional Degree Theory and Ramer’S Finite Co-Dimensional Differential Forms","authors":"K. D. Elworthy","doi":"10.1093/qmath/haab022","DOIUrl":null,"url":null,"abstract":"Infinite-dimensional degree theory, especially for Fredholm maps with positive index as developed with Tromba, is combined with Ramer’s unpublished thesis work on finite co-dimensional differential forms. As an illustrative example, the approach of Nicolaescu and Savale to the Gauss–Bonnet–Chern theorem for vector bundles is reworked in this framework. Other examples mentioned are Kokarev and Kuksin’s approach to periodic differential equations and to forced harmonic maps. A discussion about how such forms and their constructions and cohomology relate to constructions for diffusion measures on path and loop spaces is also included.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"72 1-2","pages":"571-602"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qmath/haab022","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9519181/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Infinite-dimensional degree theory, especially for Fredholm maps with positive index as developed with Tromba, is combined with Ramer’s unpublished thesis work on finite co-dimensional differential forms. As an illustrative example, the approach of Nicolaescu and Savale to the Gauss–Bonnet–Chern theorem for vector bundles is reworked in this framework. Other examples mentioned are Kokarev and Kuksin’s approach to periodic differential equations and to forced harmonic maps. A discussion about how such forms and their constructions and cohomology relate to constructions for diffusion measures on path and loop spaces is also included.
无限维度理论与Ramer有限协维微分形式
无限维度理论,特别是由Tromba发展的Fredholm正指数映射,与Ramer未发表的关于有限协维微分形式的论文相结合。作为一个说明性的例子,Nicolaescu和Savale对向量束的Gauss-Bonnet-Chern定理的方法在这个框架中被重新处理。其他提到的例子是Kokarev和Kuksin对周期微分方程和强制调和映射的方法。还讨论了这些形式及其构造和上同调与路径和环路空间上扩散测度的构造的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信