{"title":"Troubleshooting deep-learner training data problems using an evolutionary algorithm on Summit","authors":"M. Coletti;A. Fafard;D. Page","doi":"10.1147/JRD.2019.2960225","DOIUrl":null,"url":null,"abstract":"Architectural and hyperparameter design choices can influence deep-learner (DL) model fidelity but can also be affected by malformed training and validation data. However, practitioners may spend significant time refining layers and hyperparameters before discovering that distorted training data were impeding the training progress. We found that an evolutionary algorithm (EA) can be used to troubleshoot this kind of DL problem. An EA evaluated thousands of DL configurations on Summit that yielded no overall improvement in DL performance, which suggested problems with the training and validation data. We suspected that contrast limited adaptive histogram equalization enhancement that was applied to previously generated digital surface models, for which we were training DLs to find errors, had damaged the training data. Subsequent runs with an alternative global normalization yielded significantly improved DL performance. However, the DL intersection over unions still exhibited consistent subpar performance, which suggested further problems with the training data and DL approach. Nonetheless, we were able to diagnose this problem within a 12-hour span via Summit runs, which prevented several weeks of unproductive trial-and-error DL configuration refinement and allowed for a more timely convergence on an ultimately viable solution.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1147/JRD.2019.2960225","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/8935167/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6
Abstract
Architectural and hyperparameter design choices can influence deep-learner (DL) model fidelity but can also be affected by malformed training and validation data. However, practitioners may spend significant time refining layers and hyperparameters before discovering that distorted training data were impeding the training progress. We found that an evolutionary algorithm (EA) can be used to troubleshoot this kind of DL problem. An EA evaluated thousands of DL configurations on Summit that yielded no overall improvement in DL performance, which suggested problems with the training and validation data. We suspected that contrast limited adaptive histogram equalization enhancement that was applied to previously generated digital surface models, for which we were training DLs to find errors, had damaged the training data. Subsequent runs with an alternative global normalization yielded significantly improved DL performance. However, the DL intersection over unions still exhibited consistent subpar performance, which suggested further problems with the training data and DL approach. Nonetheless, we were able to diagnose this problem within a 12-hour span via Summit runs, which prevented several weeks of unproductive trial-and-error DL configuration refinement and allowed for a more timely convergence on an ultimately viable solution.
期刊介绍:
The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals.
Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.