{"title":"Reconstruction of cascading failures in dynamical models of power grids","authors":"Alessandra Corso;Lucia Valentina Gambuzza;Federico Malizia;Giovanni Russo;Vito Latora;Mattia Frasca","doi":"10.1093/comnet/cnac035","DOIUrl":null,"url":null,"abstract":"In this article, we propose a method to reconstruct the active links of a power network described by a second-order Kuramoto model and subject to dynamically induced cascading failures. Starting from the assumption (realistic for power grids) that the structure of the network is known, our method reconstructs the active links from the evolution of the relevant dynamical quantities of the nodes of the system, that is, the node phases and angular velocities. We find that, to reconstruct the temporal sequence of the faults, it is crucial to use time series with a small number of samples, as the observation window should be smaller than the temporal distance between subsequent events. This requirement is in contrast with the need of using larger sets of data in the presence of noise, such that the number of samples to feed in the algorithm has to be selected as a trade-off between the prediction error and temporal resolution of the active link reconstruction.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"10 4","pages":"175-308"},"PeriodicalIF":2.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10070459/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, we propose a method to reconstruct the active links of a power network described by a second-order Kuramoto model and subject to dynamically induced cascading failures. Starting from the assumption (realistic for power grids) that the structure of the network is known, our method reconstructs the active links from the evolution of the relevant dynamical quantities of the nodes of the system, that is, the node phases and angular velocities. We find that, to reconstruct the temporal sequence of the faults, it is crucial to use time series with a small number of samples, as the observation window should be smaller than the temporal distance between subsequent events. This requirement is in contrast with the need of using larger sets of data in the presence of noise, such that the number of samples to feed in the algorithm has to be selected as a trade-off between the prediction error and temporal resolution of the active link reconstruction.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network