Real-Time Traffic State Measurement Using Autonomous Vehicles Open Data

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhaohan Wang;Profita Keo;Meead Saberi
{"title":"Real-Time Traffic State Measurement Using Autonomous Vehicles Open Data","authors":"Zhaohan Wang;Profita Keo;Meead Saberi","doi":"10.1109/OJITS.2023.3298893","DOIUrl":null,"url":null,"abstract":"Autonomous vehicle (AV) technologies are expected to disrupt the existing urban transportation systems. AVs’ multi-sensor system can generate large amount of data, often used for localization and safety purposes. This study proposes and demonstrates a practical framework for real-time measurement of local traffic states using LiDAR data from AVs. Fundamental traffic flow variables including volume, density, and speed are computed along with the traffic time-space diagrams. The framework is tested using the Waymo Open dataset. Results provide insights into the possibility of real-time traffic state estimation using AVs’ data for traffic operations and management applications.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"4 ","pages":"602-610"},"PeriodicalIF":4.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784355/9999144/10195163.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10195163/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous vehicle (AV) technologies are expected to disrupt the existing urban transportation systems. AVs’ multi-sensor system can generate large amount of data, often used for localization and safety purposes. This study proposes and demonstrates a practical framework for real-time measurement of local traffic states using LiDAR data from AVs. Fundamental traffic flow variables including volume, density, and speed are computed along with the traffic time-space diagrams. The framework is tested using the Waymo Open dataset. Results provide insights into the possibility of real-time traffic state estimation using AVs’ data for traffic operations and management applications.
利用自动驾驶汽车开放数据进行实时交通状态测量
自动驾驶汽车(AV)技术有望颠覆现有的城市交通系统。自动驾驶汽车的多传感器系统可以产生大量数据,通常用于定位和安全目的。本研究提出并演示了一个实用的框架,用于使用自动驾驶汽车的激光雷达数据实时测量本地交通状态。基本交通流变量包括体积、密度和速度与交通时空图一起计算。该框架使用Waymo开放数据集进行测试。研究结果揭示了将自动驾驶汽车的数据用于交通运营和管理应用的实时交通状态估计的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信