DNN-Based Map Deviation Detection in LiDAR Point Clouds

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Christopher Plachetka;Benjamin Sertolli;Jenny Fricke;Marvin Klingner;Tim Fingscheidt
{"title":"DNN-Based Map Deviation Detection in LiDAR Point Clouds","authors":"Christopher Plachetka;Benjamin Sertolli;Jenny Fricke;Marvin Klingner;Tim Fingscheidt","doi":"10.1109/OJITS.2023.3293911","DOIUrl":null,"url":null,"abstract":"In this work we present a novel deep learning-based approach to detect and specify map deviations in erroneous or outdated high-definition (HD) maps using both sensor and map data as input to a deep neural network (DNN). We first present our proposed reference method for map deviation detection (MDD) utilizing a sensor-only DNN detecting traffic signs, traffic lights, and pole-like objects in LiDAR data, with deviations obtained by subsequently comparing detected objects and examined map. Second, we facilitate the object detection task by using the examined map as additional input to the network. Third, we employ a specialized MDD network to directly infer the correctness of the map input. Finally, we demonstrate the robustness of our approach for challenging scenes featuring occlusions and a reduced point density, e.g., due to heavy rain. Our code is available at \n<uri>https://github.com/Volkswagen/3dhd_devkit</uri>\n.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"4 ","pages":"580-601"},"PeriodicalIF":4.6000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784355/9999144/10177986.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10177986/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we present a novel deep learning-based approach to detect and specify map deviations in erroneous or outdated high-definition (HD) maps using both sensor and map data as input to a deep neural network (DNN). We first present our proposed reference method for map deviation detection (MDD) utilizing a sensor-only DNN detecting traffic signs, traffic lights, and pole-like objects in LiDAR data, with deviations obtained by subsequently comparing detected objects and examined map. Second, we facilitate the object detection task by using the examined map as additional input to the network. Third, we employ a specialized MDD network to directly infer the correctness of the map input. Finally, we demonstrate the robustness of our approach for challenging scenes featuring occlusions and a reduced point density, e.g., due to heavy rain. Our code is available at https://github.com/Volkswagen/3dhd_devkit .
基于dnn的LiDAR点云地图偏差检测
在这项工作中,我们提出了一种新的基于深度学习的方法来检测和指定错误或过时的高清(HD)地图中的地图偏差,使用传感器和地图数据作为深度神经网络(DNN)的输入。我们首先提出了地图偏差检测(MDD)的参考方法,利用仅传感器的深度神经网络检测LiDAR数据中的交通标志、交通信号灯和杆状物体,随后通过比较检测到的物体和检查的地图获得偏差。其次,我们通过使用检查过的地图作为网络的额外输入来促进目标检测任务。第三,我们使用一个专门的MDD网络来直接推断地图输入的正确性。最后,我们展示了我们的方法在具有遮挡和降低点密度的挑战性场景中的鲁棒性,例如,由于大雨。我们的代码可在https://github.com/Volkswagen/3dhd_devkit上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信