{"title":"Vulnerable underground entrance understanding for visual surveillance systems","authors":"Luping Wang , Hui Wei , Yun Hao","doi":"10.1016/j.ijcip.2023.100589","DOIUrl":null,"url":null,"abstract":"<div><p><span>Protecting critical infrastructure through visual surveillance is of vital importance, especially in underground entrance environments where large chunks of sloping glass ceilings are particularly susceptible to various types of terrorist activity. However, owing to the diversity of underground entrance environments, understanding them remains a challenge. Traditional 3D layout and object pose estimation that are evaluated on 3D point clouds or RGB-D data are energy-consuming and difficult to account for semantic information in environments. In this study, we present a methodology to understand underground entrance environments, and to recover their </span>3D reconstruction<span> from a monocular camera. Clusters of sloping angle projections are extracted. Through their corresponding vanishing points (VPs), surfaces of sloping structures are estimated. Relative geometric constraints of different planes are built to bridge the gap between 2D sloping surfaces and 3D reconstruction without precise depth or point clouds. An underground entrance scene is approximated by Manhattan and sloping non-Manhattan structures in 3D reconstruction. The approach requires no prior training, and it requires neither the camera being calibrated nor the camera internal parameters being constant. Compared to the ground truth, the percentage of incorrectly understood pixels were measured and the results demonstrated that the method can successfully understand underground entrance scenes, meeting the requirements in safety monitoring for critical infrastructures from a resource-constrained surveillance camera.</span></p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"41 ","pages":"Article 100589"},"PeriodicalIF":4.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548223000021","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Protecting critical infrastructure through visual surveillance is of vital importance, especially in underground entrance environments where large chunks of sloping glass ceilings are particularly susceptible to various types of terrorist activity. However, owing to the diversity of underground entrance environments, understanding them remains a challenge. Traditional 3D layout and object pose estimation that are evaluated on 3D point clouds or RGB-D data are energy-consuming and difficult to account for semantic information in environments. In this study, we present a methodology to understand underground entrance environments, and to recover their 3D reconstruction from a monocular camera. Clusters of sloping angle projections are extracted. Through their corresponding vanishing points (VPs), surfaces of sloping structures are estimated. Relative geometric constraints of different planes are built to bridge the gap between 2D sloping surfaces and 3D reconstruction without precise depth or point clouds. An underground entrance scene is approximated by Manhattan and sloping non-Manhattan structures in 3D reconstruction. The approach requires no prior training, and it requires neither the camera being calibrated nor the camera internal parameters being constant. Compared to the ground truth, the percentage of incorrectly understood pixels were measured and the results demonstrated that the method can successfully understand underground entrance scenes, meeting the requirements in safety monitoring for critical infrastructures from a resource-constrained surveillance camera.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.