Laser Spark Evolution in an Ethylene Jet in Supersonic Crossflow Configuration

IF 2 3区 工程技术 Q3 MECHANICS
Dan Fries, Devesh Ranjan, Suresh Menon
{"title":"Laser Spark Evolution in an Ethylene Jet in Supersonic Crossflow Configuration","authors":"Dan Fries,&nbsp;Devesh Ranjan,&nbsp;Suresh Menon","doi":"10.1007/s10494-022-00382-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ignition and relighting in supersonic flows is an important challenge for the design of hypersonic propulsion systems. Supersonic compressible flows of interest exhibit much larger local variations in velocity, shear, and thermodynamic state than their incompressible counterparts. Thus, it is of interest to study the relationship between ignition kernel evolution, the initial spark location, and the kernel’s subsequent flow state history. We leverage the flexibility of a laser plasma ignition system to systematically explore a large set of spark locations on the symmetry plane of an ethylene jet in supersonic crossflow setup. CH* measurements are used to visualize chemically active regions and results are correlated with flow field properties derived from Mie-scattering data of the non-reacting flow field. Our study describes the laser plasma properties in detail and scrutinizes the effect of turbulent mixing and flow dilatation on ignition kernels. Finally, the results yield general guidelines for favorable ignition locations in the engineering design of chemically reactive compressible flows.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"110 2","pages":"417 - 440"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-022-00382-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ignition and relighting in supersonic flows is an important challenge for the design of hypersonic propulsion systems. Supersonic compressible flows of interest exhibit much larger local variations in velocity, shear, and thermodynamic state than their incompressible counterparts. Thus, it is of interest to study the relationship between ignition kernel evolution, the initial spark location, and the kernel’s subsequent flow state history. We leverage the flexibility of a laser plasma ignition system to systematically explore a large set of spark locations on the symmetry plane of an ethylene jet in supersonic crossflow setup. CH* measurements are used to visualize chemically active regions and results are correlated with flow field properties derived from Mie-scattering data of the non-reacting flow field. Our study describes the laser plasma properties in detail and scrutinizes the effect of turbulent mixing and flow dilatation on ignition kernels. Finally, the results yield general guidelines for favorable ignition locations in the engineering design of chemically reactive compressible flows.

Abstract Image

超声速横流结构下乙烯射流激光火花演化
超声速流场的点火与重燃是高超声速推进系统设计的一个重要挑战。我们感兴趣的超音速可压缩流在速度、剪切和热力学状态上比不可压缩流表现出更大的局部变化。因此,研究点火核演化、初始火花位置和核后续流态历史之间的关系具有重要意义。我们利用激光等离子体点火系统的灵活性,系统地探索了超声速横流装置中乙烯射流对称面上的大量火花位置。CH*测量用于可视化化学活性区域,结果与非反应流场的mie散射数据衍生的流场特性相关。我们的研究详细描述了激光等离子体的特性,并仔细研究了湍流混合和流动膨胀对点火核的影响。最后,这些结果为化学反应性可压缩流的工程设计提供了有利点火位置的一般指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信