María-José Sánchez-Rivera , María José Orts , Valentín Pérez-Herranz , Sergio Mestre
{"title":"Study of lithium carbonate as sintering aid for tin oxide densification trough experimental designs: Main variables and microstructure changes","authors":"María-José Sánchez-Rivera , María José Orts , Valentín Pérez-Herranz , Sergio Mestre","doi":"10.1016/j.bsecv.2022.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>Tin oxide is one of the most extensively studied semiconductor materials due to its broad field of applications. On the one hand, its high conductivity and its corrosion resistance are the most remarkable properties. Therefore, one of the most developed uses in the recent decades has been as ceramic electrode for electrooxidation process. On the other hand, its poor sinterability hinders a broader use. As a result, the use of advanced techniques or sintering aids for obtaining low-porosity specimens is necessary. So far, many additives have been studied, CaCO<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>, Nb<sub>2</sub>O<sub>5</sub> or MnO<sub>2</sub>, among others. In the present work, the sintering behaviour of SnO<sub>2</sub>-based powder, containing Li<sub>2</sub>CO<sub>3</sub> as a sintering aid, which generates a liquid phase, has been analysed, since it is one of the additives that has been studied to a lesser extent. The effect of the amount of sintering aid just like the thermal treatment parameters (maximum temperature, heating rate and soaking time) on volumetric contraction's evolution has been studied through a factorial experiment designs 2<sup><em>n</em></sup>. The results show that an amount of lithium carbonate greater than 1<!--> <!-->mol.% is unfavourable to densification. With regards to the thermal cycle's parameters, it is advisable to have thermal treatments at high temperatures (1300<!--> <!-->°C) with moderate soaking times (1<!--> <!-->h), as maximum temperatures have the biggest influence on the densification followed by soaking time while the heating rate has a lesser influence. Under these conditions, a microstructure of closed and rounded pores is obtained, in which a residual phase is enclosed, but the small proportion of which prevents its characterisation.</p></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"62 2","pages":"Pages 194-202"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317522000309","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Tin oxide is one of the most extensively studied semiconductor materials due to its broad field of applications. On the one hand, its high conductivity and its corrosion resistance are the most remarkable properties. Therefore, one of the most developed uses in the recent decades has been as ceramic electrode for electrooxidation process. On the other hand, its poor sinterability hinders a broader use. As a result, the use of advanced techniques or sintering aids for obtaining low-porosity specimens is necessary. So far, many additives have been studied, CaCO3, Co3O4, Nb2O5 or MnO2, among others. In the present work, the sintering behaviour of SnO2-based powder, containing Li2CO3 as a sintering aid, which generates a liquid phase, has been analysed, since it is one of the additives that has been studied to a lesser extent. The effect of the amount of sintering aid just like the thermal treatment parameters (maximum temperature, heating rate and soaking time) on volumetric contraction's evolution has been studied through a factorial experiment designs 2n. The results show that an amount of lithium carbonate greater than 1 mol.% is unfavourable to densification. With regards to the thermal cycle's parameters, it is advisable to have thermal treatments at high temperatures (1300 °C) with moderate soaking times (1 h), as maximum temperatures have the biggest influence on the densification followed by soaking time while the heating rate has a lesser influence. Under these conditions, a microstructure of closed and rounded pores is obtained, in which a residual phase is enclosed, but the small proportion of which prevents its characterisation.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.