{"title":"Nonexact oracle inequalities, r-learnability, and fast rates","authors":"Daniel Z. Zanger","doi":"10.1016/j.jco.2023.101804","DOIUrl":null,"url":null,"abstract":"<div><p>As an extension of the standard paradigm in statistical learning theory, we introduce the concept of <em>r</em>-learnability, <span><math><mn>0</mn><mo><</mo><mi>r</mi><mo>≤</mo><mn>1</mn></math></span>, which is a notion very closely related to that of nonexact oracle inequalities (see Lecue and Mendelson (2012) <span>[7]</span>). The <em>r</em>-learnability concept can enable so-called fast learning rates (along with corresponding sample complexity-type bounds) to be established at the cost of multiplying the approximation error term by an extra <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>r</mi><mo>)</mo></math></span>-factor in the learning error estimate. We establish a new, general <em>r</em>-learning bound (nonexact oracle inequality) yielding fast learning rates in probability (up to at most a logarithmic factor) for proper learning in the general setting of an agnostic model, essentially only assuming a uniformly bounded squared loss function and a hypothesis class of finite VC-dimension (that is, finite pseudo-dimension).</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"80 ","pages":"Article 101804"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000730","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
As an extension of the standard paradigm in statistical learning theory, we introduce the concept of r-learnability, , which is a notion very closely related to that of nonexact oracle inequalities (see Lecue and Mendelson (2012) [7]). The r-learnability concept can enable so-called fast learning rates (along with corresponding sample complexity-type bounds) to be established at the cost of multiplying the approximation error term by an extra -factor in the learning error estimate. We establish a new, general r-learning bound (nonexact oracle inequality) yielding fast learning rates in probability (up to at most a logarithmic factor) for proper learning in the general setting of an agnostic model, essentially only assuming a uniformly bounded squared loss function and a hypothesis class of finite VC-dimension (that is, finite pseudo-dimension).
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.