Bypassing the quadrature exactness assumption of hyperinterpolation on the sphere

IF 1.8 2区 数学 Q1 MATHEMATICS
Congpei An , Hao-Ning Wu
{"title":"Bypassing the quadrature exactness assumption of hyperinterpolation on the sphere","authors":"Congpei An ,&nbsp;Hao-Ning Wu","doi":"10.1016/j.jco.2023.101789","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the approximation of continuous functions on the unit sphere by spherical polynomials of degree <em>n</em> via hyperinterpolation. Hyperinterpolation of degree <em>n</em> is a discrete approximation of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-orthogonal projection of the same degree with its Fourier coefficients evaluated by a positive-weight quadrature rule that exactly integrates all spherical polynomials of degree at most 2<em>n</em>. This paper aims to bypass this quadrature exactness assumption by replacing it with the Marcinkiewicz–Zygmund property proposed in a previous paper. Consequently, hyperinterpolation can be constructed by a positive-weight quadrature rule (not necessarily with quadrature exactness). This scheme is referred to as <em>unfettered hyperinterpolation</em>. This paper provides a reasonable error estimate for unfettered hyperinterpolation. The error estimate generally consists of two terms: a term representing the error estimate of the original hyperinterpolation of full quadrature exactness and another introduced as compensation for the loss of exactness degrees. A guide to controlling the newly introduced term in practice is provided. In particular, if the quadrature points form a quasi-Monte Carlo (QMC) design, then there is a refined error estimate. Numerical experiments verify the error estimates and the practical guide.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"80 ","pages":"Article 101789"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000584","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the approximation of continuous functions on the unit sphere by spherical polynomials of degree n via hyperinterpolation. Hyperinterpolation of degree n is a discrete approximation of the L2-orthogonal projection of the same degree with its Fourier coefficients evaluated by a positive-weight quadrature rule that exactly integrates all spherical polynomials of degree at most 2n. This paper aims to bypass this quadrature exactness assumption by replacing it with the Marcinkiewicz–Zygmund property proposed in a previous paper. Consequently, hyperinterpolation can be constructed by a positive-weight quadrature rule (not necessarily with quadrature exactness). This scheme is referred to as unfettered hyperinterpolation. This paper provides a reasonable error estimate for unfettered hyperinterpolation. The error estimate generally consists of two terms: a term representing the error estimate of the original hyperinterpolation of full quadrature exactness and another introduced as compensation for the loss of exactness degrees. A guide to controlling the newly introduced term in practice is provided. In particular, if the quadrature points form a quasi-Monte Carlo (QMC) design, then there is a refined error estimate. Numerical experiments verify the error estimates and the practical guide.

绕过球面上超插值的正交精度假设
利用超插值方法研究了连续函数在单位球上的n次球多项式逼近问题。n次的超插值是同一次的l2 -正交投影的离散逼近,其傅立叶系数由一个正权正交规则计算,该规则精确地积分了最多2n次的所有球面多项式。本文的目的是通过用之前的论文中提出的Marcinkiewicz-Zygmund性质取代它来绕过这个正交精度假设。因此,超插值可以通过正权正交规则构造(不一定具有正交精度)。这种方案被称为无约束超插值。本文为无约束超插值提供了一个合理的误差估计。误差估计通常由两项组成:一项表示原始超插值的全正交精度的误差估计,另一项是作为补偿精度度损失而引入的。本文提供了在实践中控制新引入术语的指南。特别是,如果正交点形成一个准蒙特卡罗(QMC)设计,那么就有一个精确的误差估计。数值实验验证了误差估计和实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信