Average case tractability of non-homogeneous tensor product problems with the absolute error criterion

IF 1.8 2区 数学 Q1 MATHEMATICS
Guiqiao Xu
{"title":"Average case tractability of non-homogeneous tensor product problems with the absolute error criterion","authors":"Guiqiao Xu","doi":"10.1016/j.jco.2023.101743","DOIUrl":null,"url":null,"abstract":"<div><p>We study average case tractability of non-homogeneous tensor product problems with the absolute error criterion. We consider algorithms that use finitely many evaluations of arbitrary linear functionals<span>. For general non-homogeneous tensor product problems, we obtain the matching necessary and sufficient conditions for strong polynomial tractability in terms of the one-dimensional eigenvalues. We give some examples to show that strong polynomial tractability is not equivalent to polynomial tractability, and polynomial tractability is not equivalent to quasi-polynomial tractability. But for non-homogeneous tensor product problems with decreasing eigenvalues, we prove that strong polynomial tractability is always equivalent to polynomial tractability, and strong polynomial tractability is even equivalent to quasi-polynomial tractability when the one-dimensional largest eigenvalues are less than one. In particular, we find an example that quasi-polynomial tractability with the absolute error criterion is not equivalent to that with the normalized error criterion even if all the one-dimensional largest eigenvalues are one. Finally we consider a special class of non-homogeneous tensor product problems with improved monotonicity condition of the eigenvalues.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101743"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000122","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study average case tractability of non-homogeneous tensor product problems with the absolute error criterion. We consider algorithms that use finitely many evaluations of arbitrary linear functionals. For general non-homogeneous tensor product problems, we obtain the matching necessary and sufficient conditions for strong polynomial tractability in terms of the one-dimensional eigenvalues. We give some examples to show that strong polynomial tractability is not equivalent to polynomial tractability, and polynomial tractability is not equivalent to quasi-polynomial tractability. But for non-homogeneous tensor product problems with decreasing eigenvalues, we prove that strong polynomial tractability is always equivalent to polynomial tractability, and strong polynomial tractability is even equivalent to quasi-polynomial tractability when the one-dimensional largest eigenvalues are less than one. In particular, we find an example that quasi-polynomial tractability with the absolute error criterion is not equivalent to that with the normalized error criterion even if all the one-dimensional largest eigenvalues are one. Finally we consider a special class of non-homogeneous tensor product problems with improved monotonicity condition of the eigenvalues.

具有绝对误差准则的非齐次张量积问题的平均情况可跟踪性
研究了具有绝对误差准则的非齐次张量积问题的平均情况可跟踪性。我们考虑使用任意线性泛函有限次求值的算法。对于一般的非齐次张量积问题,我们从一维特征值的角度得到了强多项式可跟踪性的匹配充要条件。给出了强多项式可追溯性不等价于多项式可追溯性,多项式可追溯性不等价于拟多项式可追溯性。但对于特征值递减的非齐次张量积问题,我们证明了强多项式可追溯性总是等价于多项式可追溯性,并且当一维最大特征值小于1时,强多项式可追溯性甚至等价于拟多项式可追溯性。特别地,我们发现了一个例子,即使所有的一维最大特征值都是1,具有绝对误差准则的拟多项式可追溯性并不等同于具有归一化误差准则的拟多项式可追溯性。最后,我们考虑了一类特殊的具有改进特征值单调性条件的非齐次张量积问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信