{"title":"Nonasymptotic analysis of robust regression with modified Huber's loss","authors":"Hongzhi Tong","doi":"10.1016/j.jco.2023.101744","DOIUrl":null,"url":null,"abstract":"<div><p><span>To achieve robustness against the outliers or heavy-tailed sampling distribution, we consider an Ivanov regularized empirical risk minimization scheme associated with a modified Huber's loss for nonparametric regression in reproducing kernel </span>Hilbert space<span>. By tuning the scaling and regularization parameters in accordance with the sample size, we develop nonasymptotic concentration results for such an adaptive estimator. Specifically, we establish the best convergence rates for prediction error when the conditional distribution satisfies a weak moment condition.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"76 ","pages":"Article 101744"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000134","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve robustness against the outliers or heavy-tailed sampling distribution, we consider an Ivanov regularized empirical risk minimization scheme associated with a modified Huber's loss for nonparametric regression in reproducing kernel Hilbert space. By tuning the scaling and regularization parameters in accordance with the sample size, we develop nonasymptotic concentration results for such an adaptive estimator. Specifically, we establish the best convergence rates for prediction error when the conditional distribution satisfies a weak moment condition.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.