Improved bounds on the gain coefficients for digital nets in prime power base

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Takashi Goda , Kosuke Suzuki
{"title":"Improved bounds on the gain coefficients for digital nets in prime power base","authors":"Takashi Goda ,&nbsp;Kosuke Suzuki","doi":"10.1016/j.jco.2022.101722","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study randomized<span> quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-functions with any <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>. The variance of the scrambled net quadrature for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-functions can be evaluated through the set of the so-called <em>gain coefficients.</em></p><p>In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime power base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2022) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X22000875","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We study randomized quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for Lp-functions with any p1. The variance of the scrambled net quadrature for L2-functions can be evaluated through the set of the so-called gain coefficients.

In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime power base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2022) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.

改进了原始功率基下数字网络增益系数的边界
研究了用乱网进行随机拟蒙特卡罗积分的方法。扰网正交早已获得了它的流行,因为它是真积分的无偏估计,允许实际误差估计,实现了平滑函数方差的高阶衰减,甚至对任意p≥1的lp函数也有效。l2函数的扰网正交方差可以通过所谓的增益系数集来计算。本文基于沃尔什函数系统和双网的概念,给出了一般主功率基下数字网络增益系数的改进上界。我们的结果解释了Owen(1997)对Faure序列的已知界,Pan和Owen(2022)最近对以2为基数的数字网络(包括Sobol序列作为特殊情况)改进的界,以及他们发现以2为基数的数字网络的所有非零增益系数必须是2的幂,所有这些都以统一的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信