Effects of limed manure digestate application in sandy soil on plant nitrogen availability and soil N2O emissions

Roy Posmanik , Ali Nejidat , Amit Gross
{"title":"Effects of limed manure digestate application in sandy soil on plant nitrogen availability and soil N2O emissions","authors":"Roy Posmanik ,&nbsp;Ali Nejidat ,&nbsp;Amit Gross","doi":"10.1016/j.seh.2023.100006","DOIUrl":null,"url":null,"abstract":"<div><p>Anaerobically-digested manure is frequently applied to agricultural soil to enhance plant growth and reduce the need for chemical fertilizers. This practice also stimulates microbial nitrogen transformations and often results in N<sub>2</sub>O emissions. A single mesophilic anaerobic digestion is insufficient for pathogen removal or inactivation and therefore, a post treatment is required for its stabilization and hygienization. Here, we examined the effects of limed manure-digestate as a nitrogen source for plant growth and on N<sub>2</sub>O emission compared with compost. A plant growth experiment was conducted in a sandy soil and N<sub>2</sub>O emissions were monitored throughout the experiment. Plants were irrigated with freshwater or liquid-N fertilizer. The combination of compost application and liquid-N fertilizer resulted in surface N<sub>2</sub>O fluxes over 0.7 ​mg ​m<sup>−2</sup> d<sup>−1</sup>, which were correlated with ammonium concentration in the soil. The presence of N<sub>2</sub>O in the rhizosphere was only detected in compost-amended soil 2–10 days after plantation. A significantly-lower surface N<sub>2</sub>O flux of 0.4 ​mg ​m<sup>−2</sup> d<sup>−1</sup> was recorded with application of limed-digestate, probably due to its effects on nitrogen-transforming microorganisms. Both compost and limed-digestate enhanced plant growth, with a more distinct effect in the freshwater treatment. Our observations demonstrate that limed-digestate can be an efficient substitute for compost as it effectively supports plant growth with substantially-lower N<sub>2</sub>O emissions.</p></div>","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"1 1","pages":"Article 100006"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949919423000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Anaerobically-digested manure is frequently applied to agricultural soil to enhance plant growth and reduce the need for chemical fertilizers. This practice also stimulates microbial nitrogen transformations and often results in N2O emissions. A single mesophilic anaerobic digestion is insufficient for pathogen removal or inactivation and therefore, a post treatment is required for its stabilization and hygienization. Here, we examined the effects of limed manure-digestate as a nitrogen source for plant growth and on N2O emission compared with compost. A plant growth experiment was conducted in a sandy soil and N2O emissions were monitored throughout the experiment. Plants were irrigated with freshwater or liquid-N fertilizer. The combination of compost application and liquid-N fertilizer resulted in surface N2O fluxes over 0.7 ​mg ​m−2 d−1, which were correlated with ammonium concentration in the soil. The presence of N2O in the rhizosphere was only detected in compost-amended soil 2–10 days after plantation. A significantly-lower surface N2O flux of 0.4 ​mg ​m−2 d−1 was recorded with application of limed-digestate, probably due to its effects on nitrogen-transforming microorganisms. Both compost and limed-digestate enhanced plant growth, with a more distinct effect in the freshwater treatment. Our observations demonstrate that limed-digestate can be an efficient substitute for compost as it effectively supports plant growth with substantially-lower N2O emissions.

Abstract Image

砂质土壤施石灰粪肥消化池对植物氮素有效性和土壤N2O排放的影响
厌氧消化的粪肥经常施用于农业土壤,以促进植物生长,减少对化肥的需求。这种做法还会刺激微生物氮转化,并经常导致N2O排放。单一的中温厌氧消化不足以去除或灭活病原体,因此,需要对其进行后处理以稳定和卫生。在这里,我们研究了石灰粪肥作为植物生长的氮源以及与堆肥相比对N2O排放的影响。在沙质土壤中进行植物生长试验,全程监测N2O排放。植物用淡水或液氮肥灌溉。堆肥与液氮配合施用,土壤N2O通量大于0.7 mg m−2 d−1,且与土壤铵态氮浓度相关。在种植后2-10天,堆肥土壤中检测到根际N2O的存在。施用石灰消化液记录的表面N2O通量明显较低,为0.4 mg m−2 d−1,可能是由于其对氮转化微生物的影响。堆肥和石灰消化液都能促进植物生长,在淡水处理中效果更明显。我们的观察表明,石灰消化物可以作为堆肥的有效替代品,因为它可以有效地支持植物生长,并且大大降低N2O排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信