{"title":"Deep ReLU neural network approximation in Bochner spaces and applications to parametric PDEs","authors":"Dinh Dũng , Van Kien Nguyen , Duong Thanh Pham","doi":"10.1016/j.jco.2023.101779","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We investigate non-adaptive methods of deep ReLU neural network approximation in </span>Bochner spaces </span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>,</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>)</mo></math></span> of functions on <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span><span> taking values in a separable Hilbert space </span><em>X</em>, where <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> is either <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span><span> equipped with the standard Gaussian probability measure, or </span><span><math><msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>∞</mo></mrow></msup></math></span> equipped with the Jacobi probability measure. Functions to be approximated are assumed to satisfy a certain weighted <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-summability of the generalized chaos polynomial expansion coefficients with respect to the measure <em>μ</em><span>. We prove the convergence rate of this approximation in terms of the size of approximating deep ReLU neural networks. These results then are applied to approximation of the solution to parametric<span> elliptic PDEs with random inputs for the lognormal and affine cases.</span></span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000481","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate non-adaptive methods of deep ReLU neural network approximation in Bochner spaces of functions on taking values in a separable Hilbert space X, where is either equipped with the standard Gaussian probability measure, or equipped with the Jacobi probability measure. Functions to be approximated are assumed to satisfy a certain weighted -summability of the generalized chaos polynomial expansion coefficients with respect to the measure μ. We prove the convergence rate of this approximation in terms of the size of approximating deep ReLU neural networks. These results then are applied to approximation of the solution to parametric elliptic PDEs with random inputs for the lognormal and affine cases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.