Deep ReLU neural network approximation in Bochner spaces and applications to parametric PDEs

IF 1.8 2区 数学 Q1 MATHEMATICS
Dinh Dũng , Van Kien Nguyen , Duong Thanh Pham
{"title":"Deep ReLU neural network approximation in Bochner spaces and applications to parametric PDEs","authors":"Dinh Dũng ,&nbsp;Van Kien Nguyen ,&nbsp;Duong Thanh Pham","doi":"10.1016/j.jco.2023.101779","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We investigate non-adaptive methods of deep ReLU neural network approximation in </span>Bochner spaces </span><span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>,</mo><mi>X</mi><mo>,</mo><mi>μ</mi><mo>)</mo></math></span> of functions on <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span><span> taking values in a separable Hilbert space </span><em>X</em>, where <span><math><msup><mrow><mi>U</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> is either <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span><span> equipped with the standard Gaussian probability measure, or </span><span><math><msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mo>∞</mo></mrow></msup></math></span> equipped with the Jacobi probability measure. Functions to be approximated are assumed to satisfy a certain weighted <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-summability of the generalized chaos polynomial expansion coefficients with respect to the measure <em>μ</em><span>. We prove the convergence rate of this approximation in terms of the size of approximating deep ReLU neural networks. These results then are applied to approximation of the solution to parametric<span> elliptic PDEs with random inputs for the lognormal and affine cases.</span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101779"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000481","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate non-adaptive methods of deep ReLU neural network approximation in Bochner spaces L2(U,X,μ) of functions on U taking values in a separable Hilbert space X, where U is either R equipped with the standard Gaussian probability measure, or [1,1] equipped with the Jacobi probability measure. Functions to be approximated are assumed to satisfy a certain weighted 2-summability of the generalized chaos polynomial expansion coefficients with respect to the measure μ. We prove the convergence rate of this approximation in terms of the size of approximating deep ReLU neural networks. These results then are applied to approximation of the solution to parametric elliptic PDEs with random inputs for the lognormal and affine cases.

Bochner空间中的深度ReLU神经网络逼近及其在参数偏微分方程中的应用
本文研究了Bochner空间L2(U∞,X,μ)中U∞上取值的函数的深度ReLU神经网络逼近的非自适应方法,其中U∞为带有标准高斯概率测度的R∞,或带有Jacobi概率测度的[−1,1]∞。假定待逼近的函数满足广义混沌多项式展开系数对测度μ具有一定的加权可和性。我们用深度ReLU神经网络的大小证明了这种近似的收敛速度。然后将这些结果应用于对数正态和仿射情况下随机输入参数椭圆偏微分方程解的逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信