The curse of dimensionality for the Lp-discrepancy with finite p

IF 1.8 2区 数学 Q1 MATHEMATICS
Erich Novak , Friedrich Pillichshammer
{"title":"The curse of dimensionality for the Lp-discrepancy with finite p","authors":"Erich Novak ,&nbsp;Friedrich Pillichshammer","doi":"10.1016/j.jco.2023.101769","DOIUrl":null,"url":null,"abstract":"<div><p>The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is a quantitative measure for the irregularity of distribution of an <em>N</em>-element point set in the <em>d</em>-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension <em>d</em> and error threshold <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the minimal number of points in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that the minimal normalized <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy is less or equal <em>ε</em>. It is well known, that the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-discrepancy grows exponentially fast with the dimension <em>d</em>, i.e., we have the curse of dimensionality, whereas the inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-discrepancy depends exactly linearly on <em>d</em>. The behavior of inverse of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy for general <span><math><mi>p</mi><mo>∉</mo><mo>{</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>}</mo></math></span> has been an open problem for many years. In this paper we show that the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-discrepancy suffers from the curse of dimensionality for all <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> which are of the form <span><math><mi>p</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>/</mo><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>.</p><p>This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-norm, where <em>q</em> is an even positive integer satisfying <span><math><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>q</mi><mo>=</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101769"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000389","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Lp-discrepancy is a quantitative measure for the irregularity of distribution of an N-element point set in the d-dimensional unit-cube, which is closely related to the worst-case error of quasi-Monte Carlo algorithms for numerical integration. It's inverse for dimension d and error threshold ε(0,1) is the minimal number of points in [0,1)d such that the minimal normalized Lp-discrepancy is less or equal ε. It is well known, that the inverse of L2-discrepancy grows exponentially fast with the dimension d, i.e., we have the curse of dimensionality, whereas the inverse of L-discrepancy depends exactly linearly on d. The behavior of inverse of Lp-discrepancy for general p{2,} has been an open problem for many years. In this paper we show that the Lp-discrepancy suffers from the curse of dimensionality for all p in (1,2] which are of the form p=2/(21) with N.

This result follows from a more general result that we show for the worst-case error of numerical integration in an anchored Sobolev space with anchor 0 of once differentiable functions in each variable whose first derivative has finite Lq-norm, where q is an even positive integer satisfying 1/p+1/q=1.

有限p的lp差异的维数诅咒
lp -差异是对d维单位立方中n元点集分布不规则性的定量度量,它与数值积分类蒙特卡罗算法的最坏情况误差密切相关。它在维数d上是逆的,误差阈值ε∈(0,1)是在[0,1)d中使最小归一化lp差异小于或等于ε的最小点数。众所周知,l2 -差分的逆随维数d呈指数级增长,即我们有维数的curse,而L∞-差分的逆则完全线性地依赖于d。对于一般p∈{2,∞},l2 -差分的逆的性质多年来一直是一个开放的问题。在本文中,我们证明了对于(1,2)中所有形式为p= 2r /(2r−1)且r∈N的p,其lp -差异受到维数诅咒的影响。这个结果来自于一个更一般的结果,我们展示了在锚定Sobolev空间中锚定0的一次可微函数的数值积分的最坏情况误差,每个变量的一阶导数具有有限的lq -范数,其中q是一个满足1/p+1/q=1的偶数正整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信