Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration

IF 1.8 2区 数学 Q1 MATHEMATICS
Frances Y. Kuo , Dirk Nuyens , Laurence Wilkes
{"title":"Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration","authors":"Frances Y. Kuo ,&nbsp;Dirk Nuyens ,&nbsp;Laurence Wilkes","doi":"10.1016/j.jco.2023.101785","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the <em>d</em><span>-dimensional weighted Korobov space. This algorithm uses a lattice<span> rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget </span></span><em>n</em> of a maximum allowed number of function evaluations, we uniformly pick a prime <em>p</em> in the range <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>n</mi></math></span>. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>, for a Korobov space with smoothness <span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors <em>offline</em> ahead of time at cost <span><math><mi>O</mi><mo>(</mo><mi>d</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>/</mo><mi>ln</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101785"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000547","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the d-dimensional weighted Korobov space. This algorithm uses a lattice rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget n of a maximum allowed number of function evaluations, we uniformly pick a prime p in the range n/2<pn. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form O(nα1/2+δ), with δ>0, for a Korobov space with smoothness α>1/2 and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors offline ahead of time at cost O(dn4/lnn) when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.

高维积分的随机素数-固定向量随机格算法
我们证明了一种非常简单的随机化数值积分算法可以为d维加权Korobov空间中的函数积分产生接近最优的收敛率。该算法使用具有固定生成向量的点阵规则,唯一的随机元素是函数求值次数的选择。对于给定的最大允许函数求值次数的计算预算n,我们统一地在n/2<p≤n的范围内选择一个素数p。对于光滑度为α>1/2和一般权值的Korobov空间,我们给出了随机化误差的误差界,它被定义为最坏情况下的期望误差,其形式为O(n−α - 1/2+δ), δ>0。在通常的权值条件下,界中的隐含常数是与维无关的。我们提出了一种算法,当定义Korobov空间的权重参数是所谓的积权重时,可以以O(dn4/ln n)的代价提前离线构建合适的生成向量。对于这种情况,数值实验证实了我们的理论,即新的随机化算法实现了接近最优的随机化错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信