{"title":"Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration","authors":"Frances Y. Kuo , Dirk Nuyens , Laurence Wilkes","doi":"10.1016/j.jco.2023.101785","DOIUrl":null,"url":null,"abstract":"<div><p>We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the <em>d</em><span>-dimensional weighted Korobov space. This algorithm uses a lattice<span> rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget </span></span><em>n</em> of a maximum allowed number of function evaluations, we uniformly pick a prime <em>p</em> in the range <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>n</mi></math></span>. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span>, for a Korobov space with smoothness <span><math><mi>α</mi><mo>></mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors <em>offline</em> ahead of time at cost <span><math><mi>O</mi><mo>(</mo><mi>d</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>/</mo><mi>ln</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the d-dimensional weighted Korobov space. This algorithm uses a lattice rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget n of a maximum allowed number of function evaluations, we uniformly pick a prime p in the range . We show error bounds for the randomised error, which is defined as the worst case expected error, of the form , with , for a Korobov space with smoothness and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors offline ahead of time at cost when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.