Sampling numbers of smoothness classes via ℓ1-minimization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Thomas Jahn , Tino Ullrich , Felix Voigtlaender
{"title":"Sampling numbers of smoothness classes via ℓ1-minimization","authors":"Thomas Jahn ,&nbsp;Tino Ullrich ,&nbsp;Felix Voigtlaender","doi":"10.1016/j.jco.2023.101786","DOIUrl":null,"url":null,"abstract":"<div><p>Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> can be upper bounded by best <em>n</em><span>-term trigonometric widths in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>. We describe a recovery procedure from <em>m</em> function values based on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mi>W</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> on the <em>d</em>-torus with a logarithmically better rate of convergence than any linear method can achieve when <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn></math></span> and <em>d</em> is large. This effect is not present for isotropic Sobolev spaces.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000559","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in L2. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in L2 can be upper bounded by best n-term trigonometric widths in L. We describe a recovery procedure from m function values based on 1-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of m1/2 (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to SprW(Td) on the d-torus with a logarithmically better rate of convergence than any linear method can achieve when 1<p<2 and d is large. This effect is not present for isotropic Sobolev spaces.

通过1-最小化得到平滑类的采样个数
利用压缩感知领域最新发展的技术,我们证明了L2中(拟)Banach平滑空间的一般(非线性)采样数的新上界。特别地,我们证明了在相关的情况下,如混合和各向同性加权Wiener类或具有混合平滑性的Sobolev空间,L2中的采样数可以由L∞上的最佳n项三角宽度上界。我们描述了基于1-最小化(基追求去噪)的m个函数值的恢复过程。与最近开发的线性恢复方法相比,这种方法的收敛速度有了显著的提高。在这种确定的最坏情况设置中,我们看到与加权维纳空间的线性方法相比,m−1/2(高达对数因子)的额外加速。对于它们的拟巴拿赫对应物,甚至任意多项式加速是可能的。令人惊讶的是,当1<p<2和d较大时,我们的方法允许恢复d环面上属于SprW(Td)的混合平滑Sobolev函数,其收敛速度比任何线性方法都要高。这种效应在各向同性索博列夫空间中不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信