Rates of approximation by ReLU shallow neural networks

IF 1.8 2区 数学 Q1 MATHEMATICS
Tong Mao , Ding-Xuan Zhou
{"title":"Rates of approximation by ReLU shallow neural networks","authors":"Tong Mao ,&nbsp;Ding-Xuan Zhou","doi":"10.1016/j.jco.2023.101784","DOIUrl":null,"url":null,"abstract":"<div><p>Neural networks activated by the rectified linear unit (ReLU) play a central role in the recent development of deep learning. The topic of approximating functions from Hölder spaces by these networks is crucial for understanding the efficiency of the induced learning algorithms. Although the topic has been well investigated in the setting of deep neural networks with many layers of hidden neurons, it is still open for shallow networks having only one hidden layer. In this paper, we provide rates of uniform approximation by these networks. We show that ReLU shallow neural networks with <em>m</em> hidden neurons can uniformly approximate functions from the Hölder space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> with rates <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>m</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>d</mi></mrow></msup><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></mfrac><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi><mo>+</mo><mn>4</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> when <span><math><mi>r</mi><mo>&lt;</mo><mi>d</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>2</mn></math></span>. Such rates are very close to the optimal one <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></mfrac></mrow></msup><mo>)</mo></math></span> in the sense that <span><math><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi><mo>+</mo><mn>4</mn></mrow></mfrac></math></span> is close to 1, when the dimension <em>d</em> is large.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101784"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000535","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks activated by the rectified linear unit (ReLU) play a central role in the recent development of deep learning. The topic of approximating functions from Hölder spaces by these networks is crucial for understanding the efficiency of the induced learning algorithms. Although the topic has been well investigated in the setting of deep neural networks with many layers of hidden neurons, it is still open for shallow networks having only one hidden layer. In this paper, we provide rates of uniform approximation by these networks. We show that ReLU shallow neural networks with m hidden neurons can uniformly approximate functions from the Hölder space Wr([1,1]d) with rates O((logm)12+dmrdd+2d+4) when r<d/2+2. Such rates are very close to the optimal one O(mrd) in the sense that d+2d+4 is close to 1, when the dimension d is large.

ReLU浅层神经网络的近似速率
由整流线性单元(ReLU)激活的神经网络在最近的深度学习发展中起着核心作用。通过这些网络从Hölder空间逼近函数的主题对于理解诱导学习算法的效率至关重要。尽管这个问题已经在具有多层隐藏神经元的深度神经网络中得到了很好的研究,但对于只有一层隐藏神经元的浅层神经网络来说,它仍然是开放的。在本文中,我们给出了这些网络的一致逼近速率。我们证明了具有m个隐藏神经元的ReLU浅神经网络可以在r<d/2+2时,以速率O((log (m)12+dm - rdd+2d+4)一致地逼近Hölder空间W∞r([−1,1]d)中的函数。当维数d很大时,这些速率非常接近于最优速率O(m−rd),因为d+2d+4接近于1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信