{"title":"Worst case tractability of linear problems in the presence of noise: Linear information","authors":"Leszek Plaskota, Paweł Siedlecki","doi":"10.1016/j.jco.2023.101782","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the worst case tractability of multivariate linear problems defined on separable Hilbert spaces. Information about a problem instance consists of noisy evaluations of arbitrary bounded </span>linear functionals, where the noise is either deterministic or random. The cost of a single evaluation depends on its precision and is controlled by a cost function. We establish mutual interactions between tractability of a problem with noisy information, the cost function, and tractability of the same problem, but with exact information.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"79 ","pages":"Article 101782"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000511","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the worst case tractability of multivariate linear problems defined on separable Hilbert spaces. Information about a problem instance consists of noisy evaluations of arbitrary bounded linear functionals, where the noise is either deterministic or random. The cost of a single evaluation depends on its precision and is controlled by a cost function. We establish mutual interactions between tractability of a problem with noisy information, the cost function, and tractability of the same problem, but with exact information.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.