Gang Wang , Haoye Qin , Jiayao Liu , Hao Ouyang , Xiaogang Wang , Bo Fu
{"title":"Spatiotemporal dissipative soliton resonances in multimode fiber lasers","authors":"Gang Wang , Haoye Qin , Jiayao Liu , Hao Ouyang , Xiaogang Wang , Bo Fu","doi":"10.1016/j.chaos.2023.113865","DOIUrl":null,"url":null,"abstract":"<div><p><span>Spatiotemporal mode-locking in multimode fiber lasers is intriguing for the complex nonlinear dynamics and the increase of theoretical energy limit. In this paper, we enrich spatiotemporal mode-locking with dissipative </span>soliton<span> resonances, a kind of solitons which is characterized by large pulse energy in single mode fiber lasers, and demonstrate their emergence in multimode fiber lasers by employing the reverse saturable absorption effect from real saturable absorbers. The spatiotemporal dissipative soliton resonances are expected to raise the energy limit further by the locking of dissipative soliton resonances in different transverse modes, whose energy is about twice the maximum single-mode energy in our results. Moreover, properties of spatiotemporal dissipative soliton resonances are investigated by tailoring parameters of the multimode fiber laser, where evolution and transformation of the proposed pulses including shaping and broadening are disclosed. The spatiotemporal dissipative soliton resonances in multimode fiber lasers may open up new avenue for high-power and spatiotemporally engineered coherent light fields in laser dynamics and nonlinear optics.</span></p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"174 ","pages":"Article 113865"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792300766X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Spatiotemporal mode-locking in multimode fiber lasers is intriguing for the complex nonlinear dynamics and the increase of theoretical energy limit. In this paper, we enrich spatiotemporal mode-locking with dissipative soliton resonances, a kind of solitons which is characterized by large pulse energy in single mode fiber lasers, and demonstrate their emergence in multimode fiber lasers by employing the reverse saturable absorption effect from real saturable absorbers. The spatiotemporal dissipative soliton resonances are expected to raise the energy limit further by the locking of dissipative soliton resonances in different transverse modes, whose energy is about twice the maximum single-mode energy in our results. Moreover, properties of spatiotemporal dissipative soliton resonances are investigated by tailoring parameters of the multimode fiber laser, where evolution and transformation of the proposed pulses including shaping and broadening are disclosed. The spatiotemporal dissipative soliton resonances in multimode fiber lasers may open up new avenue for high-power and spatiotemporally engineered coherent light fields in laser dynamics and nonlinear optics.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.