John Paul Cook , April Richardson , Steve Strand , Zackery Reed , Kathleen Melhuish
{"title":"Examining the concept of inverse: Theory-building via a standalone literature review","authors":"John Paul Cook , April Richardson , Steve Strand , Zackery Reed , Kathleen Melhuish","doi":"10.1016/j.jmathb.2023.101100","DOIUrl":null,"url":null,"abstract":"<div><p>Inverse is a critical topic throughout the K–16 mathematics curriculum where students encounter the notion of mathematical inverse across many contexts. The literature base on inverses is substantial, yet context-specific and compartmentalized. That is, extant research examines students’ reasoning with inverses within specific algebraic contexts. It is currently unclear what might be involved in productively reasoning with inverses across algebraic contexts, and whether the specific ways of reasoning from the literature can be abstracted to more general ways of reasoning about inverse. To address this issue, we conducted a standalone literature review to explicate and exemplify three cross-context ways of reasoning that, we hypothesize, can support students’ productive engagement with inverses in a variety of algebraic contexts: <em>inverse as an undoing</em>, <em>inverse as a manipulated element</em>, and <em>inverse as a coordination of the binary operation, identity, and set</em>. Findings also include explicating affordances and constraints for each of these ways of reasoning. Finally, we reflect on when and how standalone literature reviews can serve the purpose of unifying fragmented and obscured insights about key mathematical ideas.</p></div>","PeriodicalId":47481,"journal":{"name":"Journal of Mathematical Behavior","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Behavior","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0732312323000706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Inverse is a critical topic throughout the K–16 mathematics curriculum where students encounter the notion of mathematical inverse across many contexts. The literature base on inverses is substantial, yet context-specific and compartmentalized. That is, extant research examines students’ reasoning with inverses within specific algebraic contexts. It is currently unclear what might be involved in productively reasoning with inverses across algebraic contexts, and whether the specific ways of reasoning from the literature can be abstracted to more general ways of reasoning about inverse. To address this issue, we conducted a standalone literature review to explicate and exemplify three cross-context ways of reasoning that, we hypothesize, can support students’ productive engagement with inverses in a variety of algebraic contexts: inverse as an undoing, inverse as a manipulated element, and inverse as a coordination of the binary operation, identity, and set. Findings also include explicating affordances and constraints for each of these ways of reasoning. Finally, we reflect on when and how standalone literature reviews can serve the purpose of unifying fragmented and obscured insights about key mathematical ideas.
期刊介绍:
The Journal of Mathematical Behavior solicits original research on the learning and teaching of mathematics. We are interested especially in basic research, research that aims to clarify, in detail and depth, how mathematical ideas develop in learners. Over three decades, our experience confirms a founding premise of this journal: that mathematical thinking, hence mathematics learning as a social enterprise, is special. It is special because mathematics is special, both logically and psychologically. Logically, through the way that mathematical ideas and methods have been built, refined and organized for centuries across a range of cultures; and psychologically, through the variety of ways people today, in many walks of life, make sense of mathematics, develop it, make it their own.