Jian Tian , Chaozhong Qin , Yili Kang , Lijun You , Na Jia , Jinghan Song
{"title":"Reasons for low flowback behaviors of water-based fluids in tight sandstone gas reservoirs","authors":"Jian Tian , Chaozhong Qin , Yili Kang , Lijun You , Na Jia , Jinghan Song","doi":"10.1016/j.petrol.2022.111152","DOIUrl":null,"url":null,"abstract":"<div><p><span>Water-based working fluids are widely applied in the development of tight gas formations. However, these fluids’ flowback rate is generally low than 50%, resulting in a large amount of water retention to dramatically decline the gas delivery. Typical tight sandstone core samples are selected in this study to perform the gas-driven water displacement experiment to investigate the underlying mechanisms for the low water flowback behaviors in tight gas reservoirs. Results show that the average water flowback rate for 15 tight sandstone samples by gas-driven water displacement is obtained to be only 31.31%, which in turn causes an average gas permeability damage rate of 58.94%. Analysis suggests that multiscale pore structures, ultra-low connate water saturation phenomenon, filling of </span>hydrophilic clay minerals, and insufficient pressure drop contribute to the congenitally unfavorable geological factors of low water flowback capacity. On the other hand, irreversible formation damages like water phase trapping, salting out issues, and residual water film effect caused by water retention are the main elements that restrict water removal during a gas-flow drying process. The findings of this study provide useful insights into the control mechanisms of low water flowback behaviors and the formation damages induced by water invasion in tight sandstone gas reservoirs.</p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111152"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092041052201004X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Water-based working fluids are widely applied in the development of tight gas formations. However, these fluids’ flowback rate is generally low than 50%, resulting in a large amount of water retention to dramatically decline the gas delivery. Typical tight sandstone core samples are selected in this study to perform the gas-driven water displacement experiment to investigate the underlying mechanisms for the low water flowback behaviors in tight gas reservoirs. Results show that the average water flowback rate for 15 tight sandstone samples by gas-driven water displacement is obtained to be only 31.31%, which in turn causes an average gas permeability damage rate of 58.94%. Analysis suggests that multiscale pore structures, ultra-low connate water saturation phenomenon, filling of hydrophilic clay minerals, and insufficient pressure drop contribute to the congenitally unfavorable geological factors of low water flowback capacity. On the other hand, irreversible formation damages like water phase trapping, salting out issues, and residual water film effect caused by water retention are the main elements that restrict water removal during a gas-flow drying process. The findings of this study provide useful insights into the control mechanisms of low water flowback behaviors and the formation damages induced by water invasion in tight sandstone gas reservoirs.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.