{"title":"Critical link identification algorithm for power communication networks in SDN architecture","authors":"Bing Fan , Hongtao Tan , Yaqun Li","doi":"10.1016/j.ijcip.2022.100584","DOIUrl":null,"url":null,"abstract":"<div><p><span>With the maturity of software-defined network (SDN) technology, its application in power communication networks (PCNs) is being introduced. SDN controllers can assign working and backup routes for arriving serve requests and provide one-to-one (1:1) protection, which is crucial for the transmission of power system data with high reliability and delay requirements. For PCNs in SDN architecture, a critical link </span>identification algorithm based on link-related risk (LRR-CLIA), which considers both working and backup routes between nodes, is proposed in this paper. The algorithm calculates link importance to identify critical links by quantifying the impact of links on the network risk on service layer, transport layer, and topology layer. To verify the effectiveness of the LRR-CLIA, we compare the network loss on service layer, transport layer, topology layer, and comprehensive layer with other algorithms after ranking and removing the identified critical links in descending order. In the simulation results, the LRR-CLIA outperforms the other algorithms by an average of 39.5% and 51.77% in the small PCN and medium-scale PCN respectively, which shows that the LRR-CLIA can identify the critical links more effectively and accurately in PCNs whose services have both working and backup paths.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"40 ","pages":"Article 100584"},"PeriodicalIF":4.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548222000683","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
With the maturity of software-defined network (SDN) technology, its application in power communication networks (PCNs) is being introduced. SDN controllers can assign working and backup routes for arriving serve requests and provide one-to-one (1:1) protection, which is crucial for the transmission of power system data with high reliability and delay requirements. For PCNs in SDN architecture, a critical link identification algorithm based on link-related risk (LRR-CLIA), which considers both working and backup routes between nodes, is proposed in this paper. The algorithm calculates link importance to identify critical links by quantifying the impact of links on the network risk on service layer, transport layer, and topology layer. To verify the effectiveness of the LRR-CLIA, we compare the network loss on service layer, transport layer, topology layer, and comprehensive layer with other algorithms after ranking and removing the identified critical links in descending order. In the simulation results, the LRR-CLIA outperforms the other algorithms by an average of 39.5% and 51.77% in the small PCN and medium-scale PCN respectively, which shows that the LRR-CLIA can identify the critical links more effectively and accurately in PCNs whose services have both working and backup paths.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.