An integer programming model for obtaining cyclic quasi-difference matrices

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Luis Martínez , María Merino , Juan Manuel Montoya
{"title":"An integer programming model for obtaining cyclic quasi-difference matrices","authors":"Luis Martínez ,&nbsp;María Merino ,&nbsp;Juan Manuel Montoya","doi":"10.1016/j.orp.2022.100260","DOIUrl":null,"url":null,"abstract":"<div><p>Orthogonal arrays are of great importance in mathematical sciences. This paper analyses a certain practical advantage of quasi-difference matrices over difference matrices to obtain orthogonal arrays with given parameters. We also study the existence of quasi-difference matrices over cyclic groups originating orthogonal arrays with <span><math><mrow><mi>t</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>λ</mi><mo>=</mo><mn>1</mn></mrow></math></span>, proving their existence for some parameters sets. Moreover, we present an Integer Programming model to find such quasi-difference matrices and also a Bimodal Local Search algorithm to obtain them. We provide a conjecture related to the distributions of differences along rows and columns of arbitrary square matrices with entries in a cyclic group in positions outside the main diagonal which shows an intriguing symmetry, and we prove it when the matrix is a quasi-difference matrix.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"10 ","pages":"Article 100260"},"PeriodicalIF":3.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716022000318","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Orthogonal arrays are of great importance in mathematical sciences. This paper analyses a certain practical advantage of quasi-difference matrices over difference matrices to obtain orthogonal arrays with given parameters. We also study the existence of quasi-difference matrices over cyclic groups originating orthogonal arrays with t=2 and λ=1, proving their existence for some parameters sets. Moreover, we present an Integer Programming model to find such quasi-difference matrices and also a Bimodal Local Search algorithm to obtain them. We provide a conjecture related to the distributions of differences along rows and columns of arbitrary square matrices with entries in a cyclic group in positions outside the main diagonal which shows an intriguing symmetry, and we prove it when the matrix is a quasi-difference matrix.

求循环拟差分矩阵的整数规划模型
正交数组在数学科学中具有重要意义。本文分析了拟差分矩阵相对于差分矩阵在获得给定参数的正交阵方面的一定实用优势。我们还研究了在t=2和λ=1的正交循环群上拟差矩阵的存在性,证明了它们对某些参数集的存在性。此外,我们还提出了一个整数规划模型来寻找这种拟差矩阵,并提出了一种双模局部搜索算法来获得它们。我们给出了一个关于任意正方形矩阵的差分沿行和列的分布的猜想,其中循环群中的条目位于主对角线之外的位置,这表明了有趣的对称性,并且当矩阵是拟差分矩阵时,我们证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信