{"title":"On the Maurer-Cartan simplicial set of a complete curved \\(A_\\infty \\)-algebra","authors":"Niek de Kleijn, Felix Wierstra","doi":"10.1007/s40062-021-00290-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop the <span>\\(A_\\infty \\)</span>-analog of the Maurer-Cartan simplicial set associated to an <span>\\(L_\\infty \\)</span>-algebra and show how we can use this to study the deformation theory of <span>\\(\\infty \\)</span>-morphisms of algebras over non-symmetric operads. More precisely, we first recall and prove some of the main properties of <span>\\(A_\\infty \\)</span>-algebras like the Maurer-Cartan equation and twist. One of our main innovations here is the emphasis on the importance of the shuffle product. Then, we define a functor from the category of complete (curved) <span>\\(A_\\infty \\)</span>-algebras to simplicial sets, which sends a complete curved <span>\\(A_\\infty \\)</span>-algebra to the associated simplicial set of Maurer-Cartan elements. This functor has the property that it gives a Kan complex. In all of this, we do not require any assumptions on the field we are working over. We also show that this functor can be used to study deformation problems over a field of characteristic greater than or equal to 0. As a specific example of such a deformation problem, we study the deformation theory of <span>\\(\\infty \\)</span>-morphisms of algebras over non-symmetric operads.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"16 4","pages":"605 - 633"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-021-00290-8.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00290-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we develop the \(A_\infty \)-analog of the Maurer-Cartan simplicial set associated to an \(L_\infty \)-algebra and show how we can use this to study the deformation theory of \(\infty \)-morphisms of algebras over non-symmetric operads. More precisely, we first recall and prove some of the main properties of \(A_\infty \)-algebras like the Maurer-Cartan equation and twist. One of our main innovations here is the emphasis on the importance of the shuffle product. Then, we define a functor from the category of complete (curved) \(A_\infty \)-algebras to simplicial sets, which sends a complete curved \(A_\infty \)-algebra to the associated simplicial set of Maurer-Cartan elements. This functor has the property that it gives a Kan complex. In all of this, we do not require any assumptions on the field we are working over. We also show that this functor can be used to study deformation problems over a field of characteristic greater than or equal to 0. As a specific example of such a deformation problem, we study the deformation theory of \(\infty \)-morphisms of algebras over non-symmetric operads.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.