Splitting fields of Xn−X−1 (particularly for n=5), prime decomposition and modular forms

IF 0.8 4区 数学 Q2 MATHEMATICS
Chandrashekhar B. Khare , Alfio Fabio La Rosa , Gabor Wiese
{"title":"Splitting fields of Xn−X−1 (particularly for n=5), prime decomposition and modular forms","authors":"Chandrashekhar B. Khare ,&nbsp;Alfio Fabio La Rosa ,&nbsp;Gabor Wiese","doi":"10.1016/j.exmath.2023.02.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the splitting fields of the family of polynomials </span><span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mi>X</mi><mo>−</mo><mn>1</mn></mrow></math></span>. This family of polynomials has been much studied in the literature and has some remarkable properties. In Serre (2003), Serre related the function on primes <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, for a fixed <span><math><mrow><mi>n</mi><mo>≤</mo><mn>4</mn></mrow></math></span> and <span><math><mi>p</mi></math></span> a varying prime, which counts the number of roots of <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> to coefficients of modular forms. We study the case <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></math></span>, and relate <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> to mod 5 modular forms over <span><math><mi>Q</mi></math></span>, and to characteristic 0, parallel weight 1 Hilbert modular forms over <span><math><mrow><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mn>19</mn><mi>⋅</mi><mn>151</mn></mrow></msqrt><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000087","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the splitting fields of the family of polynomials fn(X)=XnX1. This family of polynomials has been much studied in the literature and has some remarkable properties. In Serre (2003), Serre related the function on primes Np(fn), for a fixed n4 and p a varying prime, which counts the number of roots of fn(X) in Fp to coefficients of modular forms. We study the case n=5, and relate Np(f5) to mod 5 modular forms over Q, and to characteristic 0, parallel weight 1 Hilbert modular forms over Q(19151).

分割Xn−X−1的域(特别是当n=5时),素数分解和模形式
研究了多项式族fn(X)=Xn−X−1的分裂场。这类多项式在文献中得到了大量的研究,并具有一些显著的性质。在Serre(2003)中,Serre将素数上的函数Np(fn)联系起来,对于固定的n≤4和变化的素数p,它将Fp中fn(X)的根数计算为模形式的系数。我们研究了n=5的情况,并将Np(f5)与Q上的5个模形式和Q(19·151)上的特征0、平行权值1的希尔伯特模形式联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信