Geometric quadratic Chabauty and p-adic heights

IF 0.8 4区 数学 Q2 MATHEMATICS
Juanita Duque-Rosero , Sachi Hashimoto , Pim Spelier
{"title":"Geometric quadratic Chabauty and p-adic heights","authors":"Juanita Duque-Rosero ,&nbsp;Sachi Hashimoto ,&nbsp;Pim Spelier","doi":"10.1016/j.exmath.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> be a curve of genus <span><math><mrow><mi>g</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> over <span><math><mi>Q</mi></math></span> whose Jacobian <span><math><mi>J</mi></math></span> has Mordell–Weil rank <span><math><mi>r</mi></math></span> and Néron–Severi rank <span><math><mi>ρ</mi></math></span>. When <span><math><mrow><mi>r</mi><mo>&lt;</mo><mi>g</mi><mo>+</mo><mi>ρ</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the geometric quadratic Chabauty method determines a finite set of <span><math><mi>p</mi></math></span>-adic points containing the rational points of <span><math><mi>X</mi></math></span>. We describe algorithms for geometric quadratic Chabauty that translate the geometric quadratic Chabauty method into the language of <span><math><mi>p</mi></math></span>-adic heights and <span><math><mi>p</mi></math></span>-adic (Coleman) integrals. This translation also allows us to give a comparison to the (original) cohomological method for quadratic Chabauty. We show that the finite set of <span><math><mi>p</mi></math></span>-adic points produced by the geometric method is contained in the finite set produced by the cohomological method, and give a description of their difference.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000452","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a curve of genus g>1 over Q whose Jacobian J has Mordell–Weil rank r and Néron–Severi rank ρ. When r<g+ρ1, the geometric quadratic Chabauty method determines a finite set of p-adic points containing the rational points of X. We describe algorithms for geometric quadratic Chabauty that translate the geometric quadratic Chabauty method into the language of p-adic heights and p-adic (Coleman) integrals. This translation also allows us to give a comparison to the (original) cohomological method for quadratic Chabauty. We show that the finite set of p-adic points produced by the geometric method is contained in the finite set produced by the cohomological method, and give a description of their difference.

几何二次恰布蒂和p进高度
设X是一条g>1 / Q的曲线,它的雅可比矩阵J有Mordell-Weil秩r和n - severi秩ρ。当r<g+ρ−1时,几何二次Chabauty方法确定了包含x的有理点的有限p进点集。我们描述了将几何二次Chabauty方法转换为p进高度和p进(Coleman)积分语言的几何二次Chabauty算法。这种转换也允许我们对二次Chabauty的(原始)上同调方法进行比较。证明了几何方法得到的p进点的有限集合包含在上同调方法得到的有限集合中,并给出了它们之间的差的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信