{"title":"Geometric quadratic Chabauty and p-adic heights","authors":"Juanita Duque-Rosero , Sachi Hashimoto , Pim Spelier","doi":"10.1016/j.exmath.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> be a curve of genus <span><math><mrow><mi>g</mi><mo>></mo><mn>1</mn></mrow></math></span> over <span><math><mi>Q</mi></math></span> whose Jacobian <span><math><mi>J</mi></math></span> has Mordell–Weil rank <span><math><mi>r</mi></math></span> and Néron–Severi rank <span><math><mi>ρ</mi></math></span>. When <span><math><mrow><mi>r</mi><mo><</mo><mi>g</mi><mo>+</mo><mi>ρ</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the geometric quadratic Chabauty method determines a finite set of <span><math><mi>p</mi></math></span>-adic points containing the rational points of <span><math><mi>X</mi></math></span>. We describe algorithms for geometric quadratic Chabauty that translate the geometric quadratic Chabauty method into the language of <span><math><mi>p</mi></math></span>-adic heights and <span><math><mi>p</mi></math></span>-adic (Coleman) integrals. This translation also allows us to give a comparison to the (original) cohomological method for quadratic Chabauty. We show that the finite set of <span><math><mi>p</mi></math></span>-adic points produced by the geometric method is contained in the finite set produced by the cohomological method, and give a description of their difference.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086923000452","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a curve of genus over whose Jacobian has Mordell–Weil rank and Néron–Severi rank . When , the geometric quadratic Chabauty method determines a finite set of -adic points containing the rational points of . We describe algorithms for geometric quadratic Chabauty that translate the geometric quadratic Chabauty method into the language of -adic heights and -adic (Coleman) integrals. This translation also allows us to give a comparison to the (original) cohomological method for quadratic Chabauty. We show that the finite set of -adic points produced by the geometric method is contained in the finite set produced by the cohomological method, and give a description of their difference.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.