A novel nomogram based on routine clinical indicators for screening for Wilson's disease

Q2 Medicine
Jiahui Pang , Shuru Chen , Weiqiang Gan , Guofang Tang , Yusheng Jie , Zhanyi Li , Yutian Chong , Youming Chen , Jiao Gong , Xinhua Li , Yongyu Mei
{"title":"A novel nomogram based on routine clinical indicators for screening for Wilson's disease","authors":"Jiahui Pang ,&nbsp;Shuru Chen ,&nbsp;Weiqiang Gan ,&nbsp;Guofang Tang ,&nbsp;Yusheng Jie ,&nbsp;Zhanyi Li ,&nbsp;Yutian Chong ,&nbsp;Youming Chen ,&nbsp;Jiao Gong ,&nbsp;Xinhua Li ,&nbsp;Yongyu Mei","doi":"10.1016/j.livres.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><p>There is currently no single model for predicting Wilson's disease (WD). We aimed to create a nomogram using daily clinical parameters to improve the accuracy of WD diagnosis in patients with abnormal liver function.</p></div><div><h3>Methods</h3><p>Between July 2016 and December 2020, we identified 90 WD patients with abnormal liver function who had homozygous or compound heterozygous mutations in the <em>ATP7B</em> gene. The control group included 128 patients with similar liver function but no WD during the same time period. To create a nomogram, we screened potential predictive variables using the least absolute shrinkage and selection operator model and multivariate logistic regression.</p></div><div><h3>Results</h3><p>We developed a nomogram for screening for WD based on six predictive factors: serum copper, direct bilirubin, uric acid, cholinesterase, prealbumin, and reticulocyte percentage. In the training cohort, the area under curve (AUC) of the nomogram reached 0.967 (95% confidence interval (CI) 0.946–0.988), while the area under the precision-recall curve was 0.961. Based on the optimal cutpoint of 213.55, our nomogram performed well, with a sensitivity of 96% and a specificity of 87%. In the validation cohort, the AUC of the nomogram was as high as 0.991 (95% CI 0.970–1.000).</p></div><div><h3>Conclusions</h3><p>We developed a nomogram that can predict the risk of WD prior to the detection of serum ceruloplasmin or urinary copper, greatly increasing screening efficiency for patients with abnormal liver function.</p></div>","PeriodicalId":36741,"journal":{"name":"Liver Research","volume":"7 1","pages":"Pages 82-89"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liver Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542568423000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

There is currently no single model for predicting Wilson's disease (WD). We aimed to create a nomogram using daily clinical parameters to improve the accuracy of WD diagnosis in patients with abnormal liver function.

Methods

Between July 2016 and December 2020, we identified 90 WD patients with abnormal liver function who had homozygous or compound heterozygous mutations in the ATP7B gene. The control group included 128 patients with similar liver function but no WD during the same time period. To create a nomogram, we screened potential predictive variables using the least absolute shrinkage and selection operator model and multivariate logistic regression.

Results

We developed a nomogram for screening for WD based on six predictive factors: serum copper, direct bilirubin, uric acid, cholinesterase, prealbumin, and reticulocyte percentage. In the training cohort, the area under curve (AUC) of the nomogram reached 0.967 (95% confidence interval (CI) 0.946–0.988), while the area under the precision-recall curve was 0.961. Based on the optimal cutpoint of 213.55, our nomogram performed well, with a sensitivity of 96% and a specificity of 87%. In the validation cohort, the AUC of the nomogram was as high as 0.991 (95% CI 0.970–1.000).

Conclusions

We developed a nomogram that can predict the risk of WD prior to the detection of serum ceruloplasmin or urinary copper, greatly increasing screening efficiency for patients with abnormal liver function.

一种新的基于常规临床指标的肝豆状核变性筛查图
背景和目的目前还没有预测威尔逊氏病(WD)的单一模型。我们的目的是创建一个日常临床参数的nomogram,以提高肝功能异常患者WD诊断的准确性。方法在2016年7月至2020年12月期间,我们鉴定了90例肝功能异常的WD患者,这些患者的ATP7B基因存在纯合或复合杂合突变。对照组包括128例肝功能相似但同期无WD的患者。为了创建nomogram,我们使用最小绝对收缩和选择算子模型以及多元逻辑回归来筛选潜在的预测变量。结果:我们开发了一种基于六个预测因素筛选WD的nomogram:血清铜、直接胆红素、尿酸、胆碱酯酶、前白蛋白和网织红细胞百分比。在训练队列中,nomogram曲线下面积(AUC)达到0.967(95%可信区间(CI) 0.946 ~ 0.988), precision-recall曲线下面积为0.961。基于最佳切点213.55,我们的nomogram表现良好,灵敏度为96%,特异性为87%。在验证队列中,nomogram AUC高达0.991 (95% CI 0.970 ~ 1.000)。结论我们建立了一种能在血清铜蓝蛋白或尿铜检测前预测WD风险的nomogram方法,大大提高了对肝功能异常患者的筛查效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Liver Research
Liver Research Medicine-Gastroenterology
CiteScore
5.90
自引率
0.00%
发文量
27
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信