H&E image analysis pipeline for quantifying morphological features

Q2 Medicine
Valeria Ariotta , Oskari Lehtonen , Shams Salloum , Giulia Micoli , Kari Lavikka , Ville Rantanen , Johanna Hynninen , Anni Virtanen , Sampsa Hautaniemi
{"title":"H&E image analysis pipeline for quantifying morphological features","authors":"Valeria Ariotta ,&nbsp;Oskari Lehtonen ,&nbsp;Shams Salloum ,&nbsp;Giulia Micoli ,&nbsp;Kari Lavikka ,&nbsp;Ville Rantanen ,&nbsp;Johanna Hynninen ,&nbsp;Anni Virtanen ,&nbsp;Sampsa Hautaniemi","doi":"10.1016/j.jpi.2023.100339","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&amp;E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&amp;E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"14 ","pages":"Article 100339"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.

用于形态学特征量化的H&E图像分析流水线
从组织病理学图像中检测细胞类型对于各种数字病理学应用是必不可少的。然而,全片图像(wsi)中大量的细胞需要自动化的分析管道来进行有效的细胞类型检测。在此,我们提出苏木精和伊红(H&E)图像处理管道(HEIP),用于自动分析扫描的H&E染色玻片。HEIP是一个灵活的模块化开源软件,可以执行预处理、实例分割和核特征提取。为了评估HEIP的性能,我们将其应用于提取卵巢高级别浆液性癌(HGSC)患者WSIs的细胞类型。HEIP在实例分割中显示出较高的精度,特别是对肿瘤细胞和上皮细胞。我们还表明,基因组倍性值与细胞核长轴等形态特征之间存在显著的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pathology Informatics
Journal of Pathology Informatics Medicine-Pathology and Forensic Medicine
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
18 weeks
期刊介绍: The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信