The Koszul–Tate type resolution for Gerstenhaber–Batalin–Vilkovisky algebras

Pub Date : 2018-10-25 DOI:10.1007/s40062-018-0218-2
Jeehoon Park, Donggeon Yhee
{"title":"The Koszul–Tate type resolution for Gerstenhaber–Batalin–Vilkovisky algebras","authors":"Jeehoon Park,&nbsp;Donggeon Yhee","doi":"10.1007/s40062-018-0218-2","DOIUrl":null,"url":null,"abstract":"<p>Tate provided an <i>explicit</i> way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring <i>R</i> in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant <span>\\(L_\\infty \\)</span>-algebras. More precisely, for a given GBV algebra <span>\\((\\mathcal {A}=\\oplus _{m\\ge 0}\\mathcal {A}_m, \\delta , \\ell _2^\\delta )\\)</span>, we provide another <i>explicit</i> GBV algebra <span>\\((\\widetilde{\\mathcal {A}}=\\oplus _{m\\ge 0}\\widetilde{\\mathcal {A}}_m, \\widetilde{\\delta }, \\ell _2^{\\widetilde{\\delta }})\\)</span> such that its total homology is the same as the degree zero part of the homology <span>\\(H_0(\\mathcal {A}, \\delta )\\)</span> of the given GBV algebra <span>\\((\\mathcal {A}, \\delta , \\ell _2^\\delta )\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0218-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0218-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tate provided an explicit way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring R in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant \(L_\infty \)-algebras. More precisely, for a given GBV algebra \((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2^\delta )\), we provide another explicit GBV algebra \((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \ell _2^{\widetilde{\delta }})\) such that its total homology is the same as the degree zero part of the homology \(H_0(\mathcal {A}, \delta )\) of the given GBV algebra \((\mathcal {A}, \delta , \ell _2^\delta )\).

分享
查看原文
Gerstenhaber-Batalin-Vilkovisky代数的Koszul-Tate型解析
Tate给出了一种明确的灭除可交换诺瑟环R上的可交换微分梯度代数的非平凡同调类的方法(ei J Math 1:14-27, 1957)。本文的目标是将他的结果推广到GBV (Gerstenhaber-Batalin-Vilkovisky)代数的情况,更一般地说,后代\(L_\infty \) -代数。更准确地说,对于给定的GBV代数\((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2^\delta )\),我们提供了另一个显式GBV代数\((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \ell _2^{\widetilde{\delta }})\),使得它的总同调与给定GBV代数\((\mathcal {A}, \delta , \ell _2^\delta )\)的同调\(H_0(\mathcal {A}, \delta )\)的零次部分相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信