The Koszul–Tate type resolution for Gerstenhaber–Batalin–Vilkovisky algebras

IF 0.7 4区 数学 Q2 MATHEMATICS
Jeehoon Park, Donggeon Yhee
{"title":"The Koszul–Tate type resolution for Gerstenhaber–Batalin–Vilkovisky algebras","authors":"Jeehoon Park,&nbsp;Donggeon Yhee","doi":"10.1007/s40062-018-0218-2","DOIUrl":null,"url":null,"abstract":"<p>Tate provided an <i>explicit</i> way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring <i>R</i> in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant <span>\\(L_\\infty \\)</span>-algebras. More precisely, for a given GBV algebra <span>\\((\\mathcal {A}=\\oplus _{m\\ge 0}\\mathcal {A}_m, \\delta , \\ell _2^\\delta )\\)</span>, we provide another <i>explicit</i> GBV algebra <span>\\((\\widetilde{\\mathcal {A}}=\\oplus _{m\\ge 0}\\widetilde{\\mathcal {A}}_m, \\widetilde{\\delta }, \\ell _2^{\\widetilde{\\delta }})\\)</span> such that its total homology is the same as the degree zero part of the homology <span>\\(H_0(\\mathcal {A}, \\delta )\\)</span> of the given GBV algebra <span>\\((\\mathcal {A}, \\delta , \\ell _2^\\delta )\\)</span>.</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 2","pages":"455 - 475"},"PeriodicalIF":0.7000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0218-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0218-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tate provided an explicit way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring R in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant \(L_\infty \)-algebras. More precisely, for a given GBV algebra \((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2^\delta )\), we provide another explicit GBV algebra \((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \ell _2^{\widetilde{\delta }})\) such that its total homology is the same as the degree zero part of the homology \(H_0(\mathcal {A}, \delta )\) of the given GBV algebra \((\mathcal {A}, \delta , \ell _2^\delta )\).

Gerstenhaber-Batalin-Vilkovisky代数的Koszul-Tate型解析
Tate给出了一种明确的灭除可交换诺瑟环R上的可交换微分梯度代数的非平凡同调类的方法(ei J Math 1:14-27, 1957)。本文的目标是将他的结果推广到GBV (Gerstenhaber-Batalin-Vilkovisky)代数的情况,更一般地说,后代\(L_\infty \) -代数。更准确地说,对于给定的GBV代数\((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2^\delta )\),我们提供了另一个显式GBV代数\((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \ell _2^{\widetilde{\delta }})\),使得它的总同调与给定GBV代数\((\mathcal {A}, \delta , \ell _2^\delta )\)的同调\(H_0(\mathcal {A}, \delta )\)的零次部分相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信