{"title":"The Koszul–Tate type resolution for Gerstenhaber–Batalin–Vilkovisky algebras","authors":"Jeehoon Park, Donggeon Yhee","doi":"10.1007/s40062-018-0218-2","DOIUrl":null,"url":null,"abstract":"<p>Tate provided an <i>explicit</i> way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring <i>R</i> in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant <span>\\(L_\\infty \\)</span>-algebras. More precisely, for a given GBV algebra <span>\\((\\mathcal {A}=\\oplus _{m\\ge 0}\\mathcal {A}_m, \\delta , \\ell _2^\\delta )\\)</span>, we provide another <i>explicit</i> GBV algebra <span>\\((\\widetilde{\\mathcal {A}}=\\oplus _{m\\ge 0}\\widetilde{\\mathcal {A}}_m, \\widetilde{\\delta }, \\ell _2^{\\widetilde{\\delta }})\\)</span> such that its total homology is the same as the degree zero part of the homology <span>\\(H_0(\\mathcal {A}, \\delta )\\)</span> of the given GBV algebra <span>\\((\\mathcal {A}, \\delta , \\ell _2^\\delta )\\)</span>.</p>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 2","pages":"455 - 475"},"PeriodicalIF":0.7000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0218-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0218-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tate provided an explicit way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring R in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant \(L_\infty \)-algebras. More precisely, for a given GBV algebra \((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2^\delta )\), we provide another explicit GBV algebra \((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \ell _2^{\widetilde{\delta }})\) such that its total homology is the same as the degree zero part of the homology \(H_0(\mathcal {A}, \delta )\) of the given GBV algebra \((\mathcal {A}, \delta , \ell _2^\delta )\).
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.