{"title":"The Koszul–Tate type resolution for Gerstenhaber–Batalin–Vilkovisky algebras","authors":"Jeehoon Park, Donggeon Yhee","doi":"10.1007/s40062-018-0218-2","DOIUrl":null,"url":null,"abstract":"<p>Tate provided an <i>explicit</i> way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring <i>R</i> in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant <span>\\(L_\\infty \\)</span>-algebras. More precisely, for a given GBV algebra <span>\\((\\mathcal {A}=\\oplus _{m\\ge 0}\\mathcal {A}_m, \\delta , \\ell _2^\\delta )\\)</span>, we provide another <i>explicit</i> GBV algebra <span>\\((\\widetilde{\\mathcal {A}}=\\oplus _{m\\ge 0}\\widetilde{\\mathcal {A}}_m, \\widetilde{\\delta }, \\ell _2^{\\widetilde{\\delta }})\\)</span> such that its total homology is the same as the degree zero part of the homology <span>\\(H_0(\\mathcal {A}, \\delta )\\)</span> of the given GBV algebra <span>\\((\\mathcal {A}, \\delta , \\ell _2^\\delta )\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0218-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0218-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tate provided an explicit way to kill a nontrivial homology class of a commutative differential graded algebra over a commutative noetherian ring R in Tate (Ill J Math 1:14–27, 1957). The goal of this article is to generalize his result to the case of GBV (Gerstenhaber–Batalin–Vilkovisky) algebras and, more generally, the descendant \(L_\infty \)-algebras. More precisely, for a given GBV algebra \((\mathcal {A}=\oplus _{m\ge 0}\mathcal {A}_m, \delta , \ell _2^\delta )\), we provide another explicit GBV algebra \((\widetilde{\mathcal {A}}=\oplus _{m\ge 0}\widetilde{\mathcal {A}}_m, \widetilde{\delta }, \ell _2^{\widetilde{\delta }})\) such that its total homology is the same as the degree zero part of the homology \(H_0(\mathcal {A}, \delta )\) of the given GBV algebra \((\mathcal {A}, \delta , \ell _2^\delta )\).