{"title":"Prediction of Alzheimer's disease from magnetic resonance imaging using a convolutional neural network","authors":"Kevin de Silva, Holger Kunz","doi":"10.1016/j.ibmed.2023.100091","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>The primary goal of this study is to examine if a convolutional neural network (CNN) can be applied as a diagnostic tool for predicting Alzheimer's Disease (AD) from magnetic resonance imaging (MRI) using the MIRIAD-dataset (Minimal Interval Resonance Imaging in Alzheimer's Disease) from one single central slice of the brain.</p></div><div><h3>Methods</h3><p>The MIRIAD dataset contains patients' health records represented by a set of MRI scans of the brain and further diagnostic data. Hyperparameters and configurations of CNNs were optimized to determine the best-performing model. The CNN was implemented in Python with the deep learning library ‘Keras’ using Linux/Ubuntu as the operating system.</p></div><div><h3>Results</h3><p>This study obtained the following best performance metrics for predicting Alzheimer's Disease from MRI with Matthew's Correlation Coefficient (MCC) of 0.77; accuracy of 0.89; F1-score of 0.89; AUC of 0.92. The computational time for the training of a CNN takes less than 30 sec. s with a GPU (graphics processing unit). The prediction takes less than 1 sec. on a standard PC.</p></div><div><h3>Conclusions</h3><p>The study suggests that an axial MRI scan can be used to diagnose if a patient has Alzheimer's Disease with an AUC score of 0.92.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"7 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Objectives
The primary goal of this study is to examine if a convolutional neural network (CNN) can be applied as a diagnostic tool for predicting Alzheimer's Disease (AD) from magnetic resonance imaging (MRI) using the MIRIAD-dataset (Minimal Interval Resonance Imaging in Alzheimer's Disease) from one single central slice of the brain.
Methods
The MIRIAD dataset contains patients' health records represented by a set of MRI scans of the brain and further diagnostic data. Hyperparameters and configurations of CNNs were optimized to determine the best-performing model. The CNN was implemented in Python with the deep learning library ‘Keras’ using Linux/Ubuntu as the operating system.
Results
This study obtained the following best performance metrics for predicting Alzheimer's Disease from MRI with Matthew's Correlation Coefficient (MCC) of 0.77; accuracy of 0.89; F1-score of 0.89; AUC of 0.92. The computational time for the training of a CNN takes less than 30 sec. s with a GPU (graphics processing unit). The prediction takes less than 1 sec. on a standard PC.
Conclusions
The study suggests that an axial MRI scan can be used to diagnose if a patient has Alzheimer's Disease with an AUC score of 0.92.