Stationary Brownian motion in a 3/4-plane: Reduction to a Riemann–Hilbert problem via Fourier transforms

Pub Date : 2023-09-01 DOI:10.1016/j.indag.2022.10.008
Guy Fayolle , Sandro Franceschi , Kilian Raschel
{"title":"Stationary Brownian motion in a 3/4-plane: Reduction to a Riemann–Hilbert problem via Fourier transforms","authors":"Guy Fayolle ,&nbsp;Sandro Franceschi ,&nbsp;Kilian Raschel","doi":"10.1016/j.indag.2022.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>The stationary reflected Brownian motion in a three-quarter plane has been rarely analyzed in the probabilistic literature, in comparison with the quarter plane analogue model. In this context, our main result is to prove that the stationary distribution can indeed be found by solving a boundary value problem of the same kind as the one encountered in the quarter plane, up to various dualities and symmetries. The main idea is to start from Fourier (and not Laplace) transforms, allowing to get a functional equation for a single function of two complex variables.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772200088X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stationary reflected Brownian motion in a three-quarter plane has been rarely analyzed in the probabilistic literature, in comparison with the quarter plane analogue model. In this context, our main result is to prove that the stationary distribution can indeed be found by solving a boundary value problem of the same kind as the one encountered in the quarter plane, up to various dualities and symmetries. The main idea is to start from Fourier (and not Laplace) transforms, allowing to get a functional equation for a single function of two complex variables.

分享
查看原文
3/4平面中的平稳布朗运动:通过傅立叶变换简化为Riemann-Hilbert问题
与四分之一平面模拟模型相比,概率文献中很少分析四分之三平面中的平稳反射布朗运动。在这种情况下,我们的主要结果是证明,平稳分布确实可以通过求解与四分之一平面中遇到的边值问题相同的边值,直到各种对偶和对称性来找到。其主要思想是从傅立叶(而不是拉普拉斯)变换开始,从而获得两个复变量的单个函数的函数方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信