Sujoy Bhore , Guangping Li , Martin Nöllenburg , Ignaz Rutter , Hsiang-Yun Wu
{"title":"Untangling circular drawings: Algorithms and complexity","authors":"Sujoy Bhore , Guangping Li , Martin Nöllenburg , Ignaz Rutter , Hsiang-Yun Wu","doi":"10.1016/j.comgeo.2022.101975","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of untangling a given (non-planar) straight-line circular drawing <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> of an outerplanar graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> into a planar straight-line circular drawing of <em>G</em> by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph <em>G</em>, it is obvious that such a crossing-free circular drawing always exists and we define the <em>circular shifting number</em> <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> as the minimum number of vertices that are required to be shifted in order to resolve all crossings of <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>. We show that the problem <span>Circular Untangling</span>, asking whether <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>K</mi></math></span> for a given integer <em>K</em>, is <span>NP</span>-complete. For <em>n</em>-vertex outerplanar graphs, we obtain a tight upper bound of <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><msqrt><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msqrt><mo>⌋</mo><mo>−</mo><mn>2</mn></math></span>. Moreover, we study the <span>Circular Untangling</span> for <em>almost-planar</em> circular drawings, in which a single edge is involved in all of the crossings. For this problem, we provide a tight upper bound <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>−</mo><mn>1</mn></math></span> and present an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-time algorithm to compute the circular shifting number of almost-planar drawings.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122001183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of untangling a given (non-planar) straight-line circular drawing of an outerplanar graph into a planar straight-line circular drawing of G by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph G, it is obvious that such a crossing-free circular drawing always exists and we define the circular shifting number as the minimum number of vertices that are required to be shifted in order to resolve all crossings of . We show that the problem Circular Untangling, asking whether for a given integer K, is NP-complete. For n-vertex outerplanar graphs, we obtain a tight upper bound of . Moreover, we study the Circular Untangling for almost-planar circular drawings, in which a single edge is involved in all of the crossings. For this problem, we provide a tight upper bound and present an -time algorithm to compute the circular shifting number of almost-planar drawings.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.