Untangling circular drawings: Algorithms and complexity

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Sujoy Bhore , Guangping Li , Martin Nöllenburg , Ignaz Rutter , Hsiang-Yun Wu
{"title":"Untangling circular drawings: Algorithms and complexity","authors":"Sujoy Bhore ,&nbsp;Guangping Li ,&nbsp;Martin Nöllenburg ,&nbsp;Ignaz Rutter ,&nbsp;Hsiang-Yun Wu","doi":"10.1016/j.comgeo.2022.101975","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of untangling a given (non-planar) straight-line circular drawing <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> of an outerplanar graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> into a planar straight-line circular drawing of <em>G</em> by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph <em>G</em>, it is obvious that such a crossing-free circular drawing always exists and we define the <em>circular shifting number</em> <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> as the minimum number of vertices that are required to be shifted in order to resolve all crossings of <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>. We show that the problem <span>Circular Untangling</span>, asking whether <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>K</mi></math></span> for a given integer <em>K</em>, is <span>NP</span>-complete. For <em>n</em>-vertex outerplanar graphs, we obtain a tight upper bound of <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mo>⌊</mo><msqrt><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msqrt><mo>⌋</mo><mo>−</mo><mn>2</mn></math></span>. Moreover, we study the <span>Circular Untangling</span> for <em>almost-planar</em> circular drawings, in which a single edge is involved in all of the crossings. For this problem, we provide a tight upper bound <span><math><msup><mrow><mi>shift</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>−</mo><mn>1</mn></math></span> and present an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-time algorithm to compute the circular shifting number of almost-planar drawings.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122001183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of untangling a given (non-planar) straight-line circular drawing δG of an outerplanar graph G=(V,E) into a planar straight-line circular drawing of G by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph G, it is obvious that such a crossing-free circular drawing always exists and we define the circular shifting number shift(δG) as the minimum number of vertices that are required to be shifted in order to resolve all crossings of δG. We show that the problem Circular Untangling, asking whether shift(δG)K for a given integer K, is NP-complete. For n-vertex outerplanar graphs, we obtain a tight upper bound of shift(δG)nn22. Moreover, we study the Circular Untangling for almost-planar circular drawings, in which a single edge is involved in all of the crossings. For this problem, we provide a tight upper bound shift(δG)n21 and present an O(n2)-time algorithm to compute the circular shifting number of almost-planar drawings.

解开圆形图形的角度:算法和复杂性
我们考虑将外平面图G=(V,E)的给定(非平面)直线圆图δG通过将最小数量的顶点移动到圆上的新位置来解开为G的平面直线圆图的问题。对于外平面图G,很明显,这样一个无交叉的圆形图总是存在的,并且我们将圆移位数移位∘(δG)定义为为了解决δG的所有交叉而需要移位的最小顶点数。我们证明了循环解开问题,即对于给定的整数K,移位∘(δG)是否≤K,是NP完全的。对于n-顶点外平面图,我们得到了移位(δG)≤n-−n−2的紧上界。此外,我们研究了几乎平面圆形图形的圆形取消倾斜,其中单个边涉及所有交叉点。对于这个问题,我们提供了一个紧的上界移位(δG)≤n2−1,并提出了一个O(n2)-时间算法来计算几乎平面图的圆移位数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信