Rectangle stabbing and orthogonal range reporting lower bounds in moderate dimensions

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Peyman Afshani, Rasmus Killmann
{"title":"Rectangle stabbing and orthogonal range reporting lower bounds in moderate dimensions","authors":"Peyman Afshani,&nbsp;Rasmus Killmann","doi":"10.1016/j.comgeo.2022.101959","DOIUrl":null,"url":null,"abstract":"<div><p>We study the orthogonal range reporting and rectangle stabbing problems in moderate dimensions, i.e., when the dimension is <span><math><mi>c</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for some constant <em>c</em>. In orthogonal range reporting, the input is a set of <em>n</em> points in <em>d</em> dimensions, and the goal is to store these <em>n</em><span> points in a data structure such that given a query rectangle, we can report all the input points contained in the rectangle. The rectangle stabbing problem is the “dual” problem where the input is a set of rectangles, and the query is a point.</span></p><p>Our main result is the following: assume using <span><math><mi>S</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space, we can solve either problem in <span><math><mi>d</mi><mo>=</mo><mi>c</mi><mi>log</mi><mo>⁡</mo><mi>n</mi></math></span> dimensions, <span><math><mi>c</mi><mo>≥</mo><mn>4</mn></math></span>, using <span><math><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>O</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span><span> time in the pointer machine model of computation where </span><em>t</em> is the output size. Then, we show that if the query time is small, that is, <span><math><mi>Q</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup></math></span>, for <span><math><mi>γ</mi><mo>≥</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mo>+</mo><mi>log</mi><mo>⁡</mo><mi>c</mi></mrow></mfrac></math></span>, then the space must be <span><math><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><msqrt><mrow><mi>c</mi><mi>γ</mi></mrow></msqrt><mo>/</mo><mi>e</mi><mo>−</mo><mi>o</mi><mo>(</mo><msqrt><mrow><mi>c</mi><mi>γ</mi></mrow></msqrt><mo>)</mo></mrow></msup><mo>)</mo></mrow></math></span><span>. Interestingly, we obtain this lower bound using a non-constructive method, and we show the existence of some codes that generalize a specific aspect of error correction codes. Our result overcomes the shortcomings of the previous lower bounds in the pointer machine model for non-constant dimension </span><span>[3]</span>, <span>[4]</span>, <span>[5]</span>, <span>[13]</span>, as the previous results could not be extended for <span><math><mi>d</mi><mo>=</mo><mi>Ω</mi><mo>(</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt><mo>)</mo></math></span>.</p><p>The only known lower bounds for rectangle stabbing, when the dimension is non-constant, are based on conditional lower bounds upon the best-known results on CNF-SAT <span>[21]</span>. Therefore, our lower bound is the first non-trivial unconditional lower bound for orthogonal range reporting and rectangle stabbing with non-constant dimension.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212200102X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study the orthogonal range reporting and rectangle stabbing problems in moderate dimensions, i.e., when the dimension is clog(n) for some constant c. In orthogonal range reporting, the input is a set of n points in d dimensions, and the goal is to store these n points in a data structure such that given a query rectangle, we can report all the input points contained in the rectangle. The rectangle stabbing problem is the “dual” problem where the input is a set of rectangles, and the query is a point.

Our main result is the following: assume using S(n) space, we can solve either problem in d=clogn dimensions, c4, using Q(n)+O(t) time in the pointer machine model of computation where t is the output size. Then, we show that if the query time is small, that is, Q(n)=n1γ, for γ22+logc, then the space must be Ω(n1γncγ/eo(cγ)). Interestingly, we obtain this lower bound using a non-constructive method, and we show the existence of some codes that generalize a specific aspect of error correction codes. Our result overcomes the shortcomings of the previous lower bounds in the pointer machine model for non-constant dimension [3], [4], [5], [13], as the previous results could not be extended for d=Ω(logn).

The only known lower bounds for rectangle stabbing, when the dimension is non-constant, are based on conditional lower bounds upon the best-known results on CNF-SAT [21]. Therefore, our lower bound is the first non-trivial unconditional lower bound for orthogonal range reporting and rectangle stabbing with non-constant dimension.

矩形插入和正交范围报告中等尺寸的下限
我们研究了中等维度的正交范围报告和矩形插入问题,即当维度被阻塞时⁡(n) 对于某个常数c。在正交范围报告中,输入是d维中的一组n点,目标是将这n点存储在数据结构中,以便在给定查询矩形的情况下,我们可以报告矩形中包含的所有输入点。矩形插入问题是“对偶”问题,其中输入是一组矩形,查询是一个点。我们的主要结果如下:假设使用S(n)空间,我们可以解决d=阻塞中的任何一个问题⁡n维,c≥4,在计算的指针机模型中使用Q(n)+O(t)时间,其中t是输出大小。然后,我们证明了如果查询时间很小,即Q(n)=n1-γ,对于γ≥22+log⁡c、 则空间必须是Ω(n1-γncγ/e−o(cγ))。有趣的是,我们使用非构造性方法获得了这个下界,并且我们证明了一些代码的存在,这些代码推广了纠错码的特定方面。我们的结果克服了指针机模型中非常维[3]、[4]、[5]、[13]的先前下界的缺点,因为先前的结果不能扩展到d=Ω(log⁡n) .当尺寸为非常数时,矩形插入的唯一已知下界是基于CNF-SAT[21]上最著名结果的条件下界。因此,我们的下界是正交范围报告和非常维矩形插入的第一个非平凡无条件下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信