Diagnostic tests before modeling longitudinal actuarial data

IF 1.9 2区 经济学 Q2 ECONOMICS
Yinhuan Li , Tsz Chai Fung , Liang Peng , Linyi Qian
{"title":"Diagnostic tests before modeling longitudinal actuarial data","authors":"Yinhuan Li ,&nbsp;Tsz Chai Fung ,&nbsp;Liang Peng ,&nbsp;Linyi Qian","doi":"10.1016/j.insmatheco.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>In non-life insurance, it is essential to understand the serial dynamics and dependence structure of the longitudinal insurance data before using them. Existing actuarial literature primarily focuses on modeling, which typically assumes a lack of serial dynamics and a pre-specified dependence structure of claims across multiple years. To fill in the research gap, we develop two diagnostic tests, namely the serial dynamic test and correlation test, to assess the appropriateness of these assumptions and provide justifiable modeling directions. The tests involve the following ingredients: i) computing the change of the cross-sectional estimated parameters under a logistic regression model and the empirical residual correlations of the claim occurrence indicators across time, which serve as the indications to detect serial dynamics; ii) quantifying estimation uncertainty using the randomly weighted bootstrap approach; iii) developing asymptotic theories to construct proper test statistics. The proposed tests are examined by simulated data and applied to two non-life insurance datasets, revealing that the two datasets behave differently.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"113 ","pages":"Pages 310-325"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668723000847","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In non-life insurance, it is essential to understand the serial dynamics and dependence structure of the longitudinal insurance data before using them. Existing actuarial literature primarily focuses on modeling, which typically assumes a lack of serial dynamics and a pre-specified dependence structure of claims across multiple years. To fill in the research gap, we develop two diagnostic tests, namely the serial dynamic test and correlation test, to assess the appropriateness of these assumptions and provide justifiable modeling directions. The tests involve the following ingredients: i) computing the change of the cross-sectional estimated parameters under a logistic regression model and the empirical residual correlations of the claim occurrence indicators across time, which serve as the indications to detect serial dynamics; ii) quantifying estimation uncertainty using the randomly weighted bootstrap approach; iii) developing asymptotic theories to construct proper test statistics. The proposed tests are examined by simulated data and applied to two non-life insurance datasets, revealing that the two datasets behave differently.

纵向精算数据建模前的诊断测试
在非人寿保险中,在使用纵向保险数据之前,必须了解其序列动态和依赖结构。现有的精算文献主要集中在建模上,通常假设缺乏连续动态和预先指定的多年索赔依赖结构。为了填补研究空白,我们开发了两种诊断测试,即串行动态测试和相关性测试,以评估这些假设的适当性,并提供合理的建模方向。测试涉及以下成分:i)计算逻辑回归模型下的横截面估计参数的变化和索赔发生指标随时间的经验残差相关性,作为检测序列动力学的指标;ii)使用随机加权自举方法量化估计不确定性;iii)发展渐近理论来构造适当的检验统计量。通过模拟数据对所提出的测试进行了检验,并将其应用于两个非人寿保险数据集,结果表明这两个数据集的行为不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信