{"title":"Diagnostic tests before modeling longitudinal actuarial data","authors":"Yinhuan Li , Tsz Chai Fung , Liang Peng , Linyi Qian","doi":"10.1016/j.insmatheco.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>In non-life insurance, it is essential to understand the serial dynamics and dependence structure of the longitudinal insurance data before using them. Existing actuarial literature primarily focuses on modeling, which typically assumes a lack of serial dynamics and a pre-specified dependence structure of claims across multiple years. To fill in the research gap, we develop two diagnostic tests, namely the serial dynamic test and correlation test, to assess the appropriateness of these assumptions and provide justifiable modeling directions. The tests involve the following ingredients: i) computing the change of the cross-sectional estimated parameters under a logistic regression model and the empirical residual correlations of the claim occurrence indicators across time, which serve as the indications to detect serial dynamics; ii) quantifying estimation uncertainty using the randomly weighted bootstrap approach; iii) developing asymptotic theories to construct proper test statistics. The proposed tests are examined by simulated data and applied to two non-life insurance datasets, revealing that the two datasets behave differently.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"113 ","pages":"Pages 310-325"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668723000847","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In non-life insurance, it is essential to understand the serial dynamics and dependence structure of the longitudinal insurance data before using them. Existing actuarial literature primarily focuses on modeling, which typically assumes a lack of serial dynamics and a pre-specified dependence structure of claims across multiple years. To fill in the research gap, we develop two diagnostic tests, namely the serial dynamic test and correlation test, to assess the appropriateness of these assumptions and provide justifiable modeling directions. The tests involve the following ingredients: i) computing the change of the cross-sectional estimated parameters under a logistic regression model and the empirical residual correlations of the claim occurrence indicators across time, which serve as the indications to detect serial dynamics; ii) quantifying estimation uncertainty using the randomly weighted bootstrap approach; iii) developing asymptotic theories to construct proper test statistics. The proposed tests are examined by simulated data and applied to two non-life insurance datasets, revealing that the two datasets behave differently.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.