Hilbert approximate solutions and fractional geometric behaviors of a dynamical fractional model of social media addiction affirmed by the fractional Caputo differential operator

Q1 Mathematics
Banan Maayah , Omar Abu Arqub
{"title":"Hilbert approximate solutions and fractional geometric behaviors of a dynamical fractional model of social media addiction affirmed by the fractional Caputo differential operator","authors":"Banan Maayah ,&nbsp;Omar Abu Arqub","doi":"10.1016/j.csfx.2023.100092","DOIUrl":null,"url":null,"abstract":"<div><p>In this investigation, the dynamical model of social media addiction is considered in the spirit of the Caputo differential operator. The main utilization is to elucidate the importance of nonclassical derivatives order in the implementation of social media addiction complex phenomena. Herein, we first developed the model using the Caputo scheme and discussed some fundamental mathematical computations. Secondly, we adapt the Hilbert reproducing scheme to generate numerical appropriate solutions via Mathematica 12 software. The utilized fractional social media problem was formulated and configured to solve it by fitting two subspaces from the space of Hilbert. The convergence-error behavior results are established using functional analysis techniques. After utilizing several computational algorithms, the considered model results are tabularly and graphically demonstrated with different choices of arbitrary order parameter values. The outcomes show that when applying the fractional Caputo differential operator, such complicated events become more realistic and convincing. The summary of the presented work and various scientific recommendations in addition to the future work that complements this analysis has been utilized in the last part.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"10 ","pages":"Article 100092"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054423000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this investigation, the dynamical model of social media addiction is considered in the spirit of the Caputo differential operator. The main utilization is to elucidate the importance of nonclassical derivatives order in the implementation of social media addiction complex phenomena. Herein, we first developed the model using the Caputo scheme and discussed some fundamental mathematical computations. Secondly, we adapt the Hilbert reproducing scheme to generate numerical appropriate solutions via Mathematica 12 software. The utilized fractional social media problem was formulated and configured to solve it by fitting two subspaces from the space of Hilbert. The convergence-error behavior results are established using functional analysis techniques. After utilizing several computational algorithms, the considered model results are tabularly and graphically demonstrated with different choices of arbitrary order parameter values. The outcomes show that when applying the fractional Caputo differential operator, such complicated events become more realistic and convincing. The summary of the presented work and various scientific recommendations in addition to the future work that complements this analysis has been utilized in the last part.

由分数阶Caputo微分算子确定的社交媒体成瘾动态分数阶模型的Hilbert近似解和分数阶几何行为
在这项研究中,社交媒体成瘾的动力学模型是在Caputo微分算子的精神下考虑的。主要用途是阐明非经典衍生秩序在社交媒体成瘾复杂现象实施中的重要性。在此,我们首先使用Caputo格式开发了该模型,并讨论了一些基本的数学计算。其次,我们通过Mathematica 12软件对希尔伯特再现方案进行了调整,以生成适当的数值解。所利用的分数阶社交媒体问题被公式化并配置为通过从希尔伯特空间拟合两个子空间来解决它。使用函数分析技术建立收敛误差行为结果。在使用几种计算算法后,通过不同的任意阶参数值选择,以表格和图形的方式展示了所考虑的模型结果。结果表明,当应用分数阶Caputo微分算子时,这种复杂的事件变得更加真实和令人信服。在最后一部分中,除了对本分析进行补充的未来工作外,还使用了对现有工作的总结和各种科学建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信