A quantitative Khintchine–Groshev theorem for S-arithmetic diophantine approximation

Pub Date : 2023-07-07 DOI:10.1016/j.indag.2023.06.009
Jiyoung Han
{"title":"A quantitative Khintchine–Groshev theorem for S-arithmetic diophantine approximation","authors":"Jiyoung Han","doi":"10.1016/j.indag.2023.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>In Schmidt (1960), Schmidt studied a quantitative type of Khintchine–Groshev theorem for general (higher) dimensions. Recently, a new proof of the theorem was found, which made it possible to relax the dimensional constraint and more generally, to add on the congruence condition (Alam et al., 2021).</p><p>In this paper, we generalize this new approach to <span><math><mi>S</mi></math></span>-arithmetic spaces and obtain a quantitative version of an <span><math><mi>S</mi></math></span>-arithmetic Khintchine–Groshev theorem. During the process, we consider a new, but still natural <span><math><mi>S</mi></math></span>-arithmetic analog of Diophantine approximation, which is different from the one formerly established (see Kleinbock and Tomanov, 2007). Hence for the sake of completeness, we also deal with the convergent case of the Khintchine–Groshev theorem, based on this new generalization.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Schmidt (1960), Schmidt studied a quantitative type of Khintchine–Groshev theorem for general (higher) dimensions. Recently, a new proof of the theorem was found, which made it possible to relax the dimensional constraint and more generally, to add on the congruence condition (Alam et al., 2021).

In this paper, we generalize this new approach to S-arithmetic spaces and obtain a quantitative version of an S-arithmetic Khintchine–Groshev theorem. During the process, we consider a new, but still natural S-arithmetic analog of Diophantine approximation, which is different from the one formerly established (see Kleinbock and Tomanov, 2007). Hence for the sake of completeness, we also deal with the convergent case of the Khintchine–Groshev theorem, based on this new generalization.

分享
查看原文
S-算术丢番图近似的一个定量Khintchine-Groshev定理
在Schmidt(1960)中,Schmidt研究了一般(更高)维的定量类型的Khintchine–Groshev定理。最近,该定理的一个新的证明被发现,这使得放松维度约束和更普遍地增加同余条件成为可能(Alam et al.,2021)。在本文中,我们将这种新方法推广到S-算术空间,并获得了S-算术Khintchine–Groshev定理的定量版本。在这个过程中,我们考虑了一种新的、但仍然是自然的丢番图近似的S算术模拟,它与以前建立的方法不同(见Kleinbok和Tomanov,2007)。因此,为了完整性,我们还在这个新的推广的基础上处理了Khintchine–Groshev定理的收敛情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信