A predictable smoothing evolution model for computer-controlled polishing

IF 1.9 4区 物理与天体物理 Q3 OPTICS
Jing Hou, Pengli Lei, Shiwei Liu, Xianhua Chen, Jian Wang, Wenhui Deng, Bo Zhong
{"title":"A predictable smoothing evolution model for computer-controlled polishing","authors":"Jing Hou,&nbsp;Pengli Lei,&nbsp;Shiwei Liu,&nbsp;Xianhua Chen,&nbsp;Jian Wang,&nbsp;Wenhui Deng,&nbsp;Bo Zhong","doi":"10.1186/s41476-020-00145-4","DOIUrl":null,"url":null,"abstract":"<p>Quantitative prediction of the smoothing of mid-spatial frequency errors (MSFE) is urgently needed to realize process guidance for computer controlled optical surfacing (CCOS) rather than a qualitative analysis of the processing results. Consequently, a predictable time-dependent model combining process parameters and an error decreasing factor (EDF) were presented in this paper. The basic smoothing theory, solution method and modification of this model were expounded separately and verified by experiments. The experimental results show that the theoretical predicted curve agrees well with the actual smoothing effect. The smoothing evolution model provides certain theoretical support and guidance for the quantitative prediction and parameter selection of the smoothing of MSFE.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-020-00145-4","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00145-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 4

Abstract

Quantitative prediction of the smoothing of mid-spatial frequency errors (MSFE) is urgently needed to realize process guidance for computer controlled optical surfacing (CCOS) rather than a qualitative analysis of the processing results. Consequently, a predictable time-dependent model combining process parameters and an error decreasing factor (EDF) were presented in this paper. The basic smoothing theory, solution method and modification of this model were expounded separately and verified by experiments. The experimental results show that the theoretical predicted curve agrees well with the actual smoothing effect. The smoothing evolution model provides certain theoretical support and guidance for the quantitative prediction and parameter selection of the smoothing of MSFE.

Abstract Image

计算机控制抛光的可预测平滑演化模型
为了实现计算机控制光学表面加工的工艺指导,迫切需要对中频误差(MSFE)的平滑进行定量预测,而不是对加工结果进行定性分析。在此基础上,提出了一种结合工艺参数和误差减小因子(EDF)的可预测时间依赖模型。分别阐述了该模型的基本平滑理论、求解方法和修正方法,并通过实验进行了验证。实验结果表明,理论预测曲线与实际平滑效果吻合较好。该平滑演化模型为MSFE平滑的定量预测和参数选择提供了一定的理论支持和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信