Ulderico Fugacci , Michael Kerber , Alexander Rolle
{"title":"Compression for 2-parameter persistent homology","authors":"Ulderico Fugacci , Michael Kerber , Alexander Rolle","doi":"10.1016/j.comgeo.2022.101940","DOIUrl":null,"url":null,"abstract":"<div><p>Compression aims to reduce the size of an input, while maintaining its relevant properties. For multi-parameter persistent homology, compression is a necessary step in any computational pipeline, since standard constructions lead to large inputs, and computational tasks in this area tend to be expensive. We propose two compression methods for chain complexes of free 2-parameter persistence modules. The first method extends the multi-chunk algorithm for one-parameter persistent homology, returning the smallest chain complex among all the ones quasi-isomorphic to the input. The second method produces minimal presentations of the homology of the input; it is based on an algorithm of Lesnick and Wright, but incorporates several improvements that lead to substantial performance gains. The two methods are complementary, and can be combined to compute minimal presentations for complexes with millions of generators in a few seconds. The methods have been implemented, and the software is publicly available. We report on experimental evaluations, which demonstrate substantial improvements in performance compared to previously available compression strategies.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000839","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Compression aims to reduce the size of an input, while maintaining its relevant properties. For multi-parameter persistent homology, compression is a necessary step in any computational pipeline, since standard constructions lead to large inputs, and computational tasks in this area tend to be expensive. We propose two compression methods for chain complexes of free 2-parameter persistence modules. The first method extends the multi-chunk algorithm for one-parameter persistent homology, returning the smallest chain complex among all the ones quasi-isomorphic to the input. The second method produces minimal presentations of the homology of the input; it is based on an algorithm of Lesnick and Wright, but incorporates several improvements that lead to substantial performance gains. The two methods are complementary, and can be combined to compute minimal presentations for complexes with millions of generators in a few seconds. The methods have been implemented, and the software is publicly available. We report on experimental evaluations, which demonstrate substantial improvements in performance compared to previously available compression strategies.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.