{"title":"Distance measures for geometric graphs","authors":"Sushovan Majhi , Carola Wenk","doi":"10.1016/j.comgeo.2023.102056","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A geometric graph is a combinatorial graph, endowed with a geometry that is inherited from its embedding in a </span>Euclidean space. Formulation of a meaningful measure of (dis-)similarity in both the combinatorial and geometric structures of two such geometric graphs is a challenging problem in pattern recognition. We study two notions of distance measures for geometric graphs, called the geometric edit distance (GED) and geometric graph distance (GGD). While the former is based on the idea of editing one graph to transform it into the other graph, the latter is inspired by inexact matching of the graphs. For decades, both notions have been lending themselves well as measures of similarity between attributed graphs. If used without any modification, however, they fail to provide a meaningful distance measure for geometric graphs—even cease to be a metric. We have curated their associated cost functions for the context of geometric graphs. Alongside studying the metric properties of GED and GGD, we investigate how the two notions compare. We further our understanding of the computational aspects of GGD by showing that the distance is </span><span><math><mi>NP</mi></math></span><span>-hard to compute, even if the graphs are planar and arbitrary cost coefficients are allowed.</span></p><p>As a computationally tractable alternative, we propose in this paper the Graph Mover's Distance (GMD), which has been formulated as an instance of the earth mover's distance. The computation of the GMD between two geometric graphs with at most <em>n</em> vertices takes only <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span>-time. The GMD demonstrates extremely promising empirical evidence at recognizing letter drawings.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000767","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A geometric graph is a combinatorial graph, endowed with a geometry that is inherited from its embedding in a Euclidean space. Formulation of a meaningful measure of (dis-)similarity in both the combinatorial and geometric structures of two such geometric graphs is a challenging problem in pattern recognition. We study two notions of distance measures for geometric graphs, called the geometric edit distance (GED) and geometric graph distance (GGD). While the former is based on the idea of editing one graph to transform it into the other graph, the latter is inspired by inexact matching of the graphs. For decades, both notions have been lending themselves well as measures of similarity between attributed graphs. If used without any modification, however, they fail to provide a meaningful distance measure for geometric graphs—even cease to be a metric. We have curated their associated cost functions for the context of geometric graphs. Alongside studying the metric properties of GED and GGD, we investigate how the two notions compare. We further our understanding of the computational aspects of GGD by showing that the distance is -hard to compute, even if the graphs are planar and arbitrary cost coefficients are allowed.
As a computationally tractable alternative, we propose in this paper the Graph Mover's Distance (GMD), which has been formulated as an instance of the earth mover's distance. The computation of the GMD between two geometric graphs with at most n vertices takes only -time. The GMD demonstrates extremely promising empirical evidence at recognizing letter drawings.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.