Probing the origin of higher efficiency of terphenyl phosphine over the biaryl framework in Pd-catalyzed C-N coupling: A combined DFT and machine learning study

Qingfu Ye , Yu Zhao , Jun Zhu
{"title":"Probing the origin of higher efficiency of terphenyl phosphine over the biaryl framework in Pd-catalyzed C-N coupling: A combined DFT and machine learning study","authors":"Qingfu Ye ,&nbsp;Yu Zhao ,&nbsp;Jun Zhu","doi":"10.1016/j.aichem.2023.100005","DOIUrl":null,"url":null,"abstract":"<div><p>The Pd-catalyzed Buchwald–Hartwig coupling reaction is important in the construction of the C-N bond due to various applications in organic synthesis. Quantum chemical calculations are widely used in understanding reaction mechanisms whereas the machine learning method is extremely popular in recognizing the relationships of data. Here, we combine density functional theory calculations with the support vector regression method to probe the origin of the higher efficiency of terphenyl phosphine ligand over the biaryl counterpart in the Buchwald–Hartwig C-N coupling reaction. By quantum chemical calculations, the turnover frequency-determining transition states are located and ligand features are calculated with high accuracy. By machine learning, the relationship between the reaction barrier and ligand features has been examined. It is found that the interplay of the charge on the metal center, the cone angle of the ligands, and the Sterimol L parameters of the ligand determines the catalytic performance of the palladium catalysts with different phosphine ligands. Our findings could help experimental chemists to design the ligands for Pd-catalyzed C-N coupling reactions with high efficiency.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Pd-catalyzed Buchwald–Hartwig coupling reaction is important in the construction of the C-N bond due to various applications in organic synthesis. Quantum chemical calculations are widely used in understanding reaction mechanisms whereas the machine learning method is extremely popular in recognizing the relationships of data. Here, we combine density functional theory calculations with the support vector regression method to probe the origin of the higher efficiency of terphenyl phosphine ligand over the biaryl counterpart in the Buchwald–Hartwig C-N coupling reaction. By quantum chemical calculations, the turnover frequency-determining transition states are located and ligand features are calculated with high accuracy. By machine learning, the relationship between the reaction barrier and ligand features has been examined. It is found that the interplay of the charge on the metal center, the cone angle of the ligands, and the Sterimol L parameters of the ligand determines the catalytic performance of the palladium catalysts with different phosphine ligands. Our findings could help experimental chemists to design the ligands for Pd-catalyzed C-N coupling reactions with high efficiency.

在钯催化的C-N偶联中,三苯基膦在双芳基骨架上的高效性的来源:DFT和机器学习的结合研究
钯催化的Buchwald–Hartwig偶联反应在有机合成中的各种应用,在C-N键的构建中具有重要意义。量子化学计算被广泛用于理解反应机制,而机器学习方法在识别数据关系方面非常流行。在这里,我们将密度泛函理论计算与支持向量回归方法相结合,以探索三苯基膦配体在Buchwald–Hartwig C-N偶联反应中比二芳基配体效率更高的原因。通过量子化学计算,定位了决定跃迁态的翻转频率,并高精度地计算了配体的特征。通过机器学习,研究了反应屏障和配体特征之间的关系。研究发现,金属中心上的电荷、配体的锥角和配体的Sterimol L参数的相互作用决定了具有不同膦配体的钯催化剂的催化性能。我们的发现可以帮助实验化学家设计高效的钯催化的C-N偶联反应的配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信