Daniel Bertschinger, Meghana M. Reddy , Enrico Mann
{"title":"Lions and contamination: Monotone clearings","authors":"Daniel Bertschinger, Meghana M. Reddy , Enrico Mann","doi":"10.1016/j.comgeo.2022.101961","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a special variant of a pursuit-evasion game called lions and contamination. In a graph whose vertices are originally contaminated, a set of lions walks around the graph and each lion clears the contamination from every vertex it visits. The contamination, however, simultaneously spreads to any adjacent vertex not occupied by a lion. We study the relationship between different types of clearings of graphs, such as clearings which do not allow recontamination, clearings where at most one lion moves at each time step and clearings where lions are forbidden to be stacked on the same vertex. We answer several questions raised by Adams et al. <span>[1]</span>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122001043","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a special variant of a pursuit-evasion game called lions and contamination. In a graph whose vertices are originally contaminated, a set of lions walks around the graph and each lion clears the contamination from every vertex it visits. The contamination, however, simultaneously spreads to any adjacent vertex not occupied by a lion. We study the relationship between different types of clearings of graphs, such as clearings which do not allow recontamination, clearings where at most one lion moves at each time step and clearings where lions are forbidden to be stacked on the same vertex. We answer several questions raised by Adams et al. [1].
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.