{"title":"Approximating Gromov-Hausdorff distance in Euclidean space","authors":"Sushovan Majhi , Jeffrey Vitter , Carola Wenk","doi":"10.1016/j.comgeo.2023.102034","DOIUrl":null,"url":null,"abstract":"<div><p>The Gromov-Hausdorff distance <span><math><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub><mo>)</mo></math></span> proves to be a useful distance measure between shapes. In order to approximate <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span> for <span><math><mi>X</mi><mo>,</mo><mi>Y</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, we look into its relationship with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span>, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> cannot be bounded above by a constant factor times <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span>. For <span><math><mi>d</mi><mo>=</mo><mn>1</mn></math></span>, however, we prove that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub><mo>≤</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span>. We also show that the bound is tight. In effect, for <span><math><mi>X</mi><mo>,</mo><mi>Y</mi><mo>⊂</mo><mi>R</mi></math></span> with at most <em>n</em> points, this gives rise to an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span>-time algorithm to approximate <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> with an approximation factor of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></math></span>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000548","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10
Abstract
The Gromov-Hausdorff distance proves to be a useful distance measure between shapes. In order to approximate for , we look into its relationship with , the infimum Hausdorff distance under Euclidean isometries. As already known for dimension , cannot be bounded above by a constant factor times . For , however, we prove that . We also show that the bound is tight. In effect, for with at most n points, this gives rise to an -time algorithm to approximate with an approximation factor of .
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.