Approximating Gromov-Hausdorff distance in Euclidean space

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Sushovan Majhi , Jeffrey Vitter , Carola Wenk
{"title":"Approximating Gromov-Hausdorff distance in Euclidean space","authors":"Sushovan Majhi ,&nbsp;Jeffrey Vitter ,&nbsp;Carola Wenk","doi":"10.1016/j.comgeo.2023.102034","DOIUrl":null,"url":null,"abstract":"<div><p>The Gromov-Hausdorff distance <span><math><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub><mo>)</mo></math></span> proves to be a useful distance measure between shapes. In order to approximate <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span> for <span><math><mi>X</mi><mo>,</mo><mi>Y</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, we look into its relationship with <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span>, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> cannot be bounded above by a constant factor times <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span>. For <span><math><mi>d</mi><mo>=</mo><mn>1</mn></math></span>, however, we prove that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>H</mi><mo>,</mo><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub><mo>≤</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub></math></span>. We also show that the bound is tight. In effect, for <span><math><mi>X</mi><mo>,</mo><mi>Y</mi><mo>⊂</mo><mi>R</mi></math></span> with at most <em>n</em> points, this gives rise to an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-time algorithm to approximate <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi><mi>H</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> with an approximation factor of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></math></span>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772123000548","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

The Gromov-Hausdorff distance (dGH) proves to be a useful distance measure between shapes. In order to approximate dGH for X,YRd, we look into its relationship with dH,iso, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension d2, dH,iso cannot be bounded above by a constant factor times dGH. For d=1, however, we prove that dH,iso54dGH. We also show that the bound is tight. In effect, for X,YR with at most n points, this gives rise to an O(nlogn)-time algorithm to approximate dGH(X,Y) with an approximation factor of (1+14).

欧氏空间中Gromov-Hausdorff距离的逼近
Gromov-Hausdorff距离(dGH)被证明是一个有用的形状之间的距离度量。为了近似X,Y⊂Rd的dGH,我们研究了它与欧氏等距下的下确界Hausdorff距离dH,iso的关系。正如已经知道的,对于维数d≥2,dH,iso不能在上面由常数因子乘以dGH来定界。然而,对于d=1,我们证明了dH,iso≤54dGH。我们还证明了界限是紧密的。实际上,对于最多有n个点的X,Y⊂R,这会产生O(nlog⁡n) -时间算法,以近似因子(1+14)近似dGH(X,Y)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信