An Accurate Analytical Solution to Troesch’s Problem Through Lower and Upper Envelope Techniques

Q1 Mathematics
Mihai Halic, Roshan Tajarod, Helmi Temimi
{"title":"An Accurate Analytical Solution to Troesch’s Problem Through Lower and Upper Envelope Techniques","authors":"Mihai Halic,&nbsp;Roshan Tajarod,&nbsp;Helmi Temimi","doi":"10.1016/j.csfx.2023.100096","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a novel approach to providing highly accurate analytic solutions to non-classical, non-linear problems. This approach is then implemented to the highly sensitive Troesch-problem, which possesses a boundary layer at the right-end: we determine an upper and lower envelope solution, and compare the average to existing numerical results. Computer simulations show that the proposed analytic solution is highly accurate when compared to the existing benchmark. This confirms that the proposed approach to deal with such non-linear problems can be used to treat similar non-classical boundary-value problems.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"11 ","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054423000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a novel approach to providing highly accurate analytic solutions to non-classical, non-linear problems. This approach is then implemented to the highly sensitive Troesch-problem, which possesses a boundary layer at the right-end: we determine an upper and lower envelope solution, and compare the average to existing numerical results. Computer simulations show that the proposed analytic solution is highly accurate when compared to the existing benchmark. This confirms that the proposed approach to deal with such non-linear problems can be used to treat similar non-classical boundary-value problems.

Troesch问题的上下包络精确解析解
我们考虑一种新的方法来为非经典非线性问题提供高精度的分析解。然后,将这种方法应用于高灵敏度的Troesch问题,该问题在右端具有边界层:我们确定上包络和下包络解,并将平均值与现有的数值结果进行比较。计算机模拟表明,与现有的基准相比,所提出的分析解决方案是高度准确的。这证实了所提出的处理此类非线性问题的方法可以用于处理类似的非经典边值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信